

Overview

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/hangar-py]

	tests

	
[image: Travis-CI Build Status] [https://travis-ci.org/tensorwerk/hangar-py] [image: AppVeyor Build Status] [https://ci.appveyor.com/project/rlizzo/hangar-py]

[image: Code Coverage] [https://codecov.io/gh/tensorwerk/hangar-py]

	package

	
[image: PyPI Package latest release] [https://pypi.org/project/hangar] [image: PyPI Wheel] [https://pypi.org/project/hangar] [image: Supported versions] [https://pypi.org/project/hangar] [image: Supported implementations] [https://pypi.org/project/hangar]

[image: Commits since latest release] [https://github.com/tensorwerk/hangar-py/compare/v0.3.0...master]

Hangar is version control for tensor data. Commit, branch, merge, revert, and
collaborate in the data-defined software era.

	Free software: Apache 2.0 license

What is Hangar?

Hangar is based off the belief that too much time is spent collecting, managing,
and creating home-brewed version control systems for data. At it’s core Hangar
is designed to solve many of the same problems faced by traditional code version
control system (ie. Git), just adapted for numerical data:

	Time travel through the historical evolution of a dataset.

	Zero-cost Branching to enable exploratory analysis and collaboration

	Cheap Merging to build datasets over time (with multiple collaborators)

	Completely abstracted organization and management of data files on disk

	Ability to only retrieve a small portion of the data (as needed) while still
maintaining complete historical record

	Ability to push and pull changes directly to collaborators or a central server
(ie a truly distributed version control system)

The ability of version control systems to perform these tasks for codebases is
largely taken for granted by almost every developer today; However, we are
in-fact standing on the shoulders of giants, with decades of engineering which
has resulted in these phenomenally useful tools. Now that a new era of
“Data-Defined software” is taking hold, we find there is a strong need for
analogous version control systems which are designed to handle numerical data at
large scale… Welcome to Hangar!

The Hangar Workflow:

 Checkout Branch
 |
 ▼
 Create/Access Data
 |
 ▼
Add/Remove/Update Samples
 |
 ▼
 Commit

Log Style Output:

* 5254ec (master) : merge commit combining training updates and new validation samples
|\
| * 650361 (add-validation-data) : Add validation labels and image data in isolated branch
* | 5f15b4 : Add some metadata for later reference and add new training samples received after initial import
|/
* baddba : Initial commit adding training images and labels

Learn more about what Hangar is all about at https://hangar-py.readthedocs.io/

Installation

Hangar is in early alpha development release!

pip install hangar

Documentation

https://hangar-py.readthedocs.io/

Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

	Windows

	set PYTEST_ADDOPTS=--cov-append
tox

	Other

	PYTEST_ADDOPTS=--cov-append tox

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/hangar-py]

	tests

	
[image: Travis-CI Build Status] [https://travis-ci.org/tensorwerk/hangar-py] [image: AppVeyor Build Status] [https://ci.appveyor.com/project/rlizzo/hangar-py]

[image: Code Coverage] [https://codecov.io/gh/tensorwerk/hangar-py]

	package

	
[image: PyPI Package latest release] [https://pypi.org/project/hangar] [image: PyPI Wheel] [https://pypi.org/project/hangar] [image: Supported versions] [https://pypi.org/project/hangar] [image: Supported implementations] [https://pypi.org/project/hangar]

[image: Commits since latest release] [https://github.com/tensorwerk/hangar-py/compare/v0.3.0...master]

Hangar is version control for tensor data. Commit, branch, merge, revert, and
collaborate in the data-defined software era.

	Free software: Apache 2.0 license

What is Hangar?

Hangar is based off the belief that too much time is spent collecting, managing,
and creating home-brewed version control systems for data. At it’s core Hangar
is designed to solve many of the same problems faced by traditional code version
control system (ie. Git), just adapted for numerical data:

	Time travel through the historical evolution of a dataset.

	Zero-cost Branching to enable exploratory analysis and collaboration

	Cheap Merging to build datasets over time (with multiple collaborators)

	Completely abstracted organization and management of data files on disk

	Ability to only retrieve a small portion of the data (as needed) while still
maintaining complete historical record

	Ability to push and pull changes directly to collaborators or a central server
(ie a truly distributed version control system)

The ability of version control systems to perform these tasks for codebases is
largely taken for granted by almost every developer today; However, we are
in-fact standing on the shoulders of giants, with decades of engineering which
has resulted in these phenomenally useful tools. Now that a new era of
“Data-Defined software” is taking hold, we find there is a strong need for
analogous version control systems which are designed to handle numerical data at
large scale… Welcome to Hangar!

The Hangar Workflow:

 Checkout Branch
 |
 ▼
 Create/Access Data
 |
 ▼
Add/Remove/Update Samples
 |
 ▼
 Commit

Log Style Output:

* 5254ec (master) : merge commit combining training updates and new validation samples
|\
| * 650361 (add-validation-data) : Add validation labels and image data in isolated branch
* | 5f15b4 : Add some metadata for later reference and add new training samples received after initial import
|/
* baddba : Initial commit adding training images and labels

Learn more about what Hangar is all about at https://hangar-py.readthedocs.io/

Installation

Hangar is in early alpha development release!

pip install hangar

Documentation

https://hangar-py.readthedocs.io/

Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

	Windows

	set PYTEST_ADDOPTS=--cov-append
tox

	Other

	PYTEST_ADDOPTS=--cov-append tox

Usage

To use Hangar in a project:

from hangar import Repository

Please refer to the Hangar Tutorial for examples, or Hangar Core Concepts to
review the core concepts of the Hangar system

Installation

For general usage it is recommended that you use a pre-built version of Hangar,
either from a Python Distribution, or a pre-built wheel from PyPi.

Pre-Built Installation

Python Distributions

If you do not already use a Python Distribution, we recommend the Anaconda [https://www.anaconda.com/distribution/] (or Miniconda [https://docs.conda.io/en/latest/miniconda.html]) distribution, which supports
all major operating systems (Windows, MacOSX, & the typical Linux variations).
Detailed usage instructions are available on the anaconda website [https://docs.anaconda.com/anaconda/].

To install Hangar via the Anaconda Distribution (from the conda-forge conda
channel [https://anaconda.org/conda-forge/hangar]):

conda install -c conda-forge hangar

Wheels (PyPi)

If you have an existing python installation on your computer, pre-built Hangar Wheels
can be installed via pip from the Python Package Index (PyPi):

pip install hangar

Source Installation

To install Hangar from source, clone the repository from Github [https://github.com/tensorwerk/hangar-py]:

git clone https://github.com/tensorwerk/hangar-py.git
cd hangar-py
python setup.py install

Or use pip on the local package if you want to install all dependencies
automatically in a development environment:

pip install -e .

Hangar Core Concepts

This document provides a high level overview of the problems hangar is designed
to solve and introduces the core concepts for beginning to use Hangar.

What Is Hangar?

At it’s core hangar is designed to solve many of the same problems faced by
traditional code version control system (ie. Git), just adapted for
numerical data:

	Time travel through the historical evolution of a dataset.

	Zero-cost Branching to enable exploratory analysis and collaboration

	Cheap Merging to build datasets over time (with multiple collaborators)

	Completely abstracted organization and management of data files on disk

	Ability to only retrieve a small portion of the data (as needed) while still
maintaining complete historical record

	Ability to push and pull changes directly to collaborators or a central
server (ie a truly distributed version control system)

The ability of version control systems to perform these tasks for codebases is
largely taken for granted by almost every developer today; However, we are
in-fact standing on the shoulders of giants, with decades of engineering which
has resulted in these phenomenally useful tools. Now that a new era of
“Data-Defined software” is taking hold, we find there is a strong need for
analogous version control systems which are designed to handle numerical data
at large scale… Welcome to Hangar!

Inspiration

The design of hangar was heavily influenced by the Git [https://git-scm.org]
source-code version control system. As a Hangar user, many of the fundamental
building blocks and commands can be thought of as interchangeable:

	checkout

	commit

	branch

	merge

	diff

	push

	pull/fetch

	log

Emulating the high level the git syntax has allowed us to create a user
experience which should be familiar in many ways to Hangar users; a goal of the
project is to enable many of the same VCS workflows developers use for code
while working with their data!

There are, however, many fundamental differences in how humans/programs
interpret and use text in source files vs. numerical data which raise many
questions Hangar needs to uniquely solve:

	How do we connect some piece of “Data” with a meaning in the real world?

	How do we diff and merge large collections of data samples?

	How can we resolve conflicts?

	How do we make data access (reading and writing) convenient for both
user-driven exploratory analyses and high performance production systems
operating without supervision?

	How can we enable people to work on huge datasets in a local (laptop grade)
development environment?

We will show how hangar solves these questions in a high-level guide below.
For a deep dive into the Hangar internals, we invite you to check out the
Hangar Under The Hood page.

How Hangar Thinks About Data

Abstraction 0: What is a Repository?

A “Repository” consists of an historically ordered mapping of “Commits” over
time by various “Committers” across any number of “Branches”. Though there are
many conceptual similarities in what a Git repo and a Hangar Repository
achieve, Hangar is designed with the express purpose of dealing with numeric
data. As such, when you read/write to/from a Repository, the main way of
interaction with information will be through (an arbitrary number of) Arraysets
in each Commit. A simple key/value store is also included to store metadata,
but as it is a minor point is will largely be ignored for the rest of this
post.

History exists at the Repository level, Information exists at the Commit level.

Abstraction 1: What is a Dataset?

Let’s get philosophical and talk about what a “Dataset” is. The word “Dataset”
invokes some some meaning to humans; A dataset may have a canonical name (like
“MNIST” or “CoCo”), it will have a source where it comes from, (ideally) it has
a purpose for some real-world task, it will have people who build, aggregate,
and nurture it, and most importantly a Dataset always contains pieces of some
type of information type which describes “something”.

It’s an abstract definition, but it is only us, the humans behind the machine,
which associate “Data” with some meaning in the real world; it is in the same
vein which we associate a group of Data in a “Dataset” with some real world
meaning.

Our first abstraction is therefore the “Dataset”: A collection of (potentially
groups of) data pieces observing a common form among instances which act to
describe something meaningful. To describe some phenomenon, a dataset may
require multiple pieces of information, each of a particular format, for each
instance/sample recorded in the dataset.

For Example

a Hospital will typically have a Dataset containing all of the CT scans
performed over some period of time. A single CT scan is an instance, a
single sample; however, once many are grouped together they form a
Dataset. To expand on this simple view we realize that each CT scan
consists of hundreds of pieces of information:

	Some large numeric array (the image data).

	Some smaller numeric tuples (describing image spacing, dimension
scale, capture time, machine parameters, etc).

	Many pieces of string data (the patient name, doctor name, scan
type, results found, etc).

When thinking about the group of CT scans in aggregate, we realize that
though a single scan contains many disparate pieces of information stuck
together, when thinking about the aggregation of every scan in the group,
most of (if not all) of the same information fields are duplicated within
each samples

A single scan is a bunch of disparate information stuck together, many of
those put together makes a Dataset, but looking down from the top, we identify
pattern of common fields across all items. We call these groupings of similar
typed information: Arraysets.

Abstraction 2: What Makes up a Arrayset?

A Dataset is made of one or more Arraysets (and optionally some
Metadata), with each item placed in some Arrayset belonging to and
making up an individual Sample. It is important to remember that all data
needed to fully describe a single sample in a Dataset may consist of
information spread across any number of Arraysets. To define a Arrayset
in Hangar, we need only provide:

	a name

	a type

	a shape

The individual pieces of information (Data) which fully describe some
phenomenon via an aggregate mapping access across any number of “Arraysets” are
both individually and collectively referred to as Samples in the Hangar
vernacular. According to the specification above, all samples contained in a
Arrayset must be numeric arrays with each having:

	Same data type (standard numpy data types are supported).

	A shape with each dimension size <= the shape (max shape) set in the
arrayset specification (more on this later).

Additionally, samples in a arrayset can either be named, or unnamed
(depending on how you interpret what the information contained in the
arrayset actually represents).

Effective use of Hangar relies on having an understanding of what exactly a
"Sample" is in a particular Arrayset. The most effective way to find
out is to ask: “What is the smallest piece of data which has a useful meaning
to ‘me’ (or ‘my’ downstream processes”. In the MNIST arrayset, this would
be a single digit image (a 28x28 array); for a medical arrayset it might be
an entire (512x320x320) MRI volume scan for a particular patient; while for the
NASDAQ Stock Ticker it might be an hours worth of price data points (or less,
or more!) The point is that when you think about what a ``sample`` is, it
should typically be the smallest atomic unit of useful information.

Abstraction 3: What is Data?

From this point forward, when we talk about “Data” we are actually talking
about n-dimensional arrays of numeric information. To Hangar, “Data” is just a
collection of numbers being passed into and out of it. Data does not have a
file type, it does not have a file-extension, it does not mean anything to
Hangar itself - it is just numbers. This theory of “Data” is nearly as simple
as it gets, and this simplicity is what enables us to be unconstrained as we
build abstractions and utilities to operate on it.

Summary

A Dataset is thought of as containing Samples, but is actually defined by
Arraysets, which store parts of fully defined Samples in structures common
across the full aggregation of Dataset Samples.

This can essentially be represented as a key -> tensor mapping, which can
(optionally) be Sparse depending on usage patterns

 Dataset
 |

 | | | |
 Arrayset 1 Arrayset 2 Arrayset 3 Arrayset 4
 | | | |
--
 image | filename | label | annotation |
--
 S1 | S1 | | S1 |
 S2 | S2 | S2 | S2 |
 S3 | S3 | S3 | |
 S4 | S4 | | |

More techincally, a Dataset is just a view over the columns that gives you
sample tuples based on the cross product of keys and columns. Hangar doesn't
store or track the data set, just the underlying columns.

 S1 = (image[S1], filename[S1], annotation[S1])
 S2 = (image[S2], filename[S2], label[S2], annotation[S2])
 S3 = (image[S3], filename[S3], label[S3])
 S4 = (image[S4], filename[S4])

Note

The technical crowd among the readers should note:

	Hangar preserves all sample data bit-exactly.

	Dense arrays are fully supported, Sparse array support is currently
under development and will be released soon.

	Integrity checks are built in by default (explained in more detail in
Hangar Under The Hood.) using cryptographically secure
algorithms.

	Hangar is very much a young project, until penetration tests and
security reviews are performed, we will refrain from stating that hangar
is fully “cryptographically secure”. Security experts are welcome to
contact us privately at hangar.info@tensorwerk.com to disclose any security issues.

Implications of the Hangar Data Philosophy

The Domain-Specific File Format Problem

Though it may seem counterintuitive at first, there is an incredible
amount of freedom (and power) that is gained when “you” (the user) start to
decouple some information container from the data which it actually holds. At
the end of the day, the algorithms and systems you use to produce insight from
data are just mathematical operations; math does not operate on a specific file
type, math operates on numbers.

Human & Computational Cost

It seems strange that organizations & projects commonly rely on storing data on
disk in some domain-specific - or custom built - binary format (ie. a .jpg
image, .nii neuroimaging informatics study, .cvs tabular data, etc.),
and just deal with the hassle of maintaining all the infrastructure around
reading, writing, transforming, and preprocessing these files into useable
numerical data every time they want to interact with their Arraysets. Even
disregarding the computational cost/overhead of preprocessing & transforming
the data on every read/write, these schemes require significant amounts of
human capital (developer time) to be spent on building, testing, and
upkeep/maintenance; all while adding significant complexity for users. Oh, and
they also have a strangely high inclination to degenerate into horrible
complexity which essentially becomes “magic” after the original creators move
on.

The Hangar system is quite different in this regards. First, we trust that
you know what your data is and what it should be best represented as. When
writing to a Hangar repository, you process the data into n-dimensional arrays
once. Then when you retrieve it you are provided with the same array, in the
same shape and datatype (unless you ask for a particular subarray-slice),
already initialized in memory and ready to compute on instantly.

High Performance From Simplicity

Because Hangar is designed to deal (almost exclusively) with numerical arrays,
we are able to “stand on the shoulders of giants” once again by utilizing many
of the well validated, highly optimized, and community validated numerical
array data management utilities developed by the High Performance Computing
community over the past few decades.

In a sense, the backend of Hangar serves two functions:

	Bookkeeping: recording information about about arraysets, samples, commits,
etc.

	Data Storage: highly optimized interfaces which store and retrieve data from
from disk through its backend utility.

The details are explained much more thoroughly in
Hangar Under The Hood.

Because Hangar only considers data to be numbers, the choice of backend to
store data is (in a sense) completely arbitrary so long as Data In == Data
Out. This fact has massive implications for the system; instead of being
tied to a single backend (each of which will have significant performance
tradeoffs for arrays of particular datatypes, shapes, and access patterns), we
simultaneously store different data pieces in the backend which is most suited
to it. A great deal of care has been taken to optimize parameters in the
backend interface which affects performance and compression of data samples.

The choice of backend to store a piece of data is selected automatically from
heuristics based on the arrayset specification, system details, and context of
the storage service internal to Hangar. As a user, this is completely
transparent to you in all steps of interacting with the repository. It does
not require (or even accept) user specified configuration.

At the time of writing, Hangar has the following backends implemented (with
plans to potentially support more as needs arise):

	HDF5 [https://www.hdfgroup.org/solutions/hdf5/]

	Memmapped Arrays [https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html]

	TileDb [https://tiledb.io/] (in development)

Open Source Software Style Collaboration in Dataset Curation

Specialized Domain Knowledge is A Scarce Resource

A common side effect of the The Domain-Specific File Format Problem is that
anyone who wants to work with an organization’s/project’s data needs to not
only have some domain expertise (so they can do useful things with the data),
but they also need to have a non-trivial understanding of the projects
dataset, file format, and access conventions / transformation pipelines. In a
world where highly specialized talent is already scarce, this phenomenon
shrinks the pool of available collaborators dramatically.

Given this situation, it’s understandable why when most organizations spend
massive amounts of money and time to build a team, collect & annotate data, and
build an infrastructure around that information, they hold it for their private
use with little regards for how the world could use it together. Businesses
rely on proprietary information to stay ahead of their competitors, and because
this information is so difficult (and expensive) to generate, it’s completely
reasonable that they should be the ones to benefit from all that work.

A Thought Experiment

Imagine that Git and GitHub didn’t take over the world. Imagine
that the Diff and Patch Unix tools never existed. Instead, imagine
we were to live in a world where every software project had very different
version control systems (largely homeade by non VCS experts, & not
validated by a community over many years of use). Even worse, most of these
tools don’t allow users to easily branch, make changes, and automatically
merge them back. It shouldn’t be difficult to imagine how dramatically such
a world would contrast to ours today. Open source software as we know it
would hardly exist, and any efforts would probably be massively fragmented
across the web (if there would even be a ‘web’ that we would recognize in
this strange world).

Without a way to collaborate in the open, open source software would
largely not exist, and we would all be worse off for it.

Doesn’t this hypothetical sound quite a bit like the state of open source
data collaboration in todays world?

The impetus for developing a tool like Hangar is the belief that if it is
simple for anyone with domain knowledge to collaboratively curate arraysets
containing information they care about, then they will.* Open source software
development benefits everyone, we believe open source arrayset curation can do
the same.

How To Overcome The “Size” Problem

Even if the greatest tool imaginable existed to version, branch, and merge
arraysets, it would face one massive problem which if it didn’t solve would
kill the project: The size of data can very easily exceeds what can fit on
(most) contributors laptops or personal workstations. This section explains
how Hangar can handle working with arraysets which are prohibitively large to
download or store on a single machine.

As mentioned in High Performance From Simplicity, under the hood Hangar
deals with “Data” and “Bookkeeping” completely separately. We’ve previously
covered what exactly we mean by Data in How Hangar Thinks About Data, so
we’ll briefly cover the second major component of Hangar here. In short
“Bookkeeping” describes everything about the repository. By everything, we do
mean that the Bookkeeping records describe everything: all commits, parents,
branches, arraysets, samples, data descriptors, schemas, commit message, etc.
Though complete, these records are fairly small (tens of MB in size for
decently sized repositories with decent history), and are highly compressed for
fast transfer between a Hangar client/server.

A brief technical interlude

There is one very important (and rather complex) property which gives
Hangar Bookeeping massive power: Existence of some data piece is always
known to Hangar and stored immutably once committed. However, the access
pattern, backend, and locating information for this data piece may (and
over time, will) be unique in every hangar repository instance.

Though the details of how this works is well beyond the scope of this
document, the following example may provide some insight into the
implications of this property:

If you clone some hangar repository, Bookeeping says that “some
number of data pieces exist” and they should retrieved from the server.
However, the bookeeping records transfered in a fetch / push /
clone operation do not include information about where that piece
of data existed on the client (or server) computer. Two synced
repositories can use completly different backends to store the data, in
completly different locations, and it does not matter - Hangar only
guarrentees that when collaborators ask for a data sample in some
checkout, that they will be provided with identical arrays, not that
they will come from the same place or be stored in the same way. Only
when data is actually retrieved is the “locating information” set for
that repository instance.

Because Hangar makes no assumptions about how/where it should retrieve some
piece of data, or even an assumption that it exists on the local machine, and
because records are small and completely describe history, once a machine has
the Bookkeeping, it can decide what data it actually wants to materialize on
it’s local disk! These partial fetch / partial clone operations can
materialize any desired data, whether it be for a few records at the head
branch, for all data in a commit, or for the entire historical data. A future
release will even include the ability to stream data directly to a hangar
checkout and materialize the data in memory without having to save it to disk
at all!

More importantly: Since Bookkeeping describes all history, merging can be
performed between branches which may contain partial (or even no) actual
data. Aka. You don’t need data on disk to merge changes into it. It’s an odd
concept which will be explained more in depth in the future.

..note

To try this out for yourself, please refer to the the API Docs
(:ref:`ref-api`) on working with Remotes, especially the ``fetch()`` and
``fetch-data()`` methods. Otherwise look for through our tutorials &
examples for more practical info!

What Does it Mean to “Merge” Data?

We’ll start this section, once again, with a comparison to source code version
control systems. When dealing with source code text, merging is performed in
order to take a set of changes made to a document, and logically insert the
changes into some other version of the document. The goal is to generate a new
version of the document with all changes made to it in a fashion which conforms
to the “change author’s” intentions. Simply put: the new version is valid and
what is expected by the authors.

This concept of what it means to merge text does not generally map well to
changes made in a arrayset we’ll explore why through this section, but look
back to the philosophy of Data outlined in How Hangar Thinks About Data for
inspiration as we begin. Remember, in the Hangar design a Sample is the
smallest array which contains useful information. As any smaller selection of
the sample array is meaningless, Hangar does not support subarray-slicing or
per-index updates when writing data. (subarray-slice queries are permitted
for read operations, though regular use is discouraged and may indicate that
your samples are larger than they should be).

Diffing Hangar Checkouts

To understand merge logic, we first need to understand diffing, and the actors
operations which can occur.

	Addition

	An operation which creates a arrayset, sample, or some metadata which
did not previously exist in the relevant branch history.

	Removal

	An operation which removes some arrayset, a sample, or some metadata which
existed in the parent of the commit under consideration. (Note: removing a
arrayset also removes all samples contained in it)

	Mutation

	An operation which sets: data to a sample, the value of some metadata key,
or a arrayset schema, to a different value than what it had previously been
created with (Note: a arrayset schema mutation is observed when a arrayset
is removed, and a new arrayset with the same name is created with a
different dtype/shape, all in the same commit)

Merging Changes

Merging diffs solely consisting of additions and removals between branches is
trivial, and performs exactly as one would expect from a text diff. Where
things diverge from text is when we consider how we will merge diffs containing
mutations.

Say we have some sample in commit A, a branch is created, the sample is
updated, and commit C is created. At the same time, someone else checks out
branch whose HEAD is at commit A, and commits a change to the sample as well.
If these changes are identical, they are compatible, but what if they are not?
In the following example, we diff and merge each element of the sample array
like we would text:

 Merge ??
 commit A commit B Does combining mean anything?

[[0, 1, 2], [[0, 1, 2], [[1, 1, 1],
 [0, 1, 2], -----> [2, 2, 2], ------------> [2, 2, 2],
 [0, 1, 2]] [3, 3, 3]] / [3, 3, 3]]
 \ /
 \ commit C /
 \ /
 \ [[1, 1, 1], /
 -------> [0, 1, 2],
 [0, 1, 2]]

We see that a result can be generated, and can agree if this was a piece of
text, the result would be correct. Don’t be fooled, this is an abomination and
utterly wrong/meaningless. Remember we said earlier "the result of a merge
should conform to the intentions of each author". This merge result conforms
to neither author’s intention. The value of an array element is not isolated,
every value affects how the entire sample is understood. The values at Commit B
or commit C may be fine on their own, but if two samples are mutated
independently with non-identical updates, it is a conflict that needs to be
handled by the authors.

This is the actual behavior of Hangar.

 commit A commit B

[[0, 1, 2], [[0, 1, 2],
 [0, 1, 2], -----> [2, 2, 2], ----- MERGE CONFLICT
 [0, 1, 2]] [3, 3, 3]] /
 \ /
 \ commit C /
 \ /
 \ [[1, 1, 1], /
 -------> [0, 1, 2],
 [0, 1, 2]]

When a conflict is detected, the merge author must either pick a sample from
one of the commits or make changes in one of the branches such that the
conflicting sample values are resolved.

How Are Conflicts Detected?

Any merge conflicts can be identified and addressed ahead of running a
merge command by using the built in diff tools. When diffing commits,
Hangar will provide a list of conflicts which it identifies. In general these
fall into 4 categories:

	Additions in both branches which created new keys (samples / arraysets /
metadata) with non-compatible values. For samples & metadata, the hash of
the data is compared, for arraysets, the schema specification is checked for
compatibility in a method custom to the internal workings of Hangar.

	Removal in Master Commit / Branch & Mutation in Dev Commit /
Branch. Applies for samples, arraysets, and metadata identically.

	Mutation in Dev Commit / Branch & Removal in Master Commit /
Branch. Applies for samples, arraysets, and metadata identically.

	Mutations on keys both branches to non-compatible values. For samples &
metadata, the hash of the data is compared, for arraysets, the schema
specification is checked for compatibility in a method custom to the
internal workings of Hangar.

What’s Next?

	Get started using Hangar today: Installation.

	Read the tutorials: Hangar Tutorial.

	Dive into the details: Hangar Under The Hood.

Hangar Tutorial

	Part 1: Creating A Repository And Working With Data

	Part 2: Checkouts, Branching, & Merging

	Part 3: Working With Remote Servers

	Dataloaders for Machine Learning (Tensorflow & PyTorch)

Part 1: Creating A Repository And Working With Data

This tutorial will review the first steps of working with a hangar repository.

To fit with the beginner’s theme, we will use the MNIST dataset. Later examples will show off how to work with much more complex data.

[1]:

from hangar import Repository

import numpy as np
import pickle
import gzip
import matplotlib.pyplot as plt

from tqdm import tqdm

Creating & Interacting with a Hangar Repository

Hangar is designed to “just make sense” in every operation you have to perform. As such, there is a single interface which all interaction begins with: the Repository object.

Weather a hangar repository exists at the path you specify or not, just tell hangar where it should live!

Intitializing a repository

The first time you want to work with a new repository, the init() method must be called. This is where you provide hangar with your name and email address (to be used in the commit log), as well as implicitly confirming that you do want to create the underlying data files hangar uses on disk.

[2]:

repo = Repository(path='/Users/rick/projects/tensorwerk/hangar/dev/mnist/')

First time a repository is accessed only!
Note: if you feed a path to the `Repository` which does not contain a pre-iniitlized hangar repo,
when the Repository object is initialized it will let you know that you need to run `init()`

repo.init(user_name='Rick Izzo', user_email='rick@tensorwerk.com', remove_old=True)

Hangar Repo initialized at: /Users/rick/projects/tensorwerk/hangar/dev/mnist/.hangar

[2]:

'/Users/rick/projects/tensorwerk/hangar/dev/mnist/.hangar'

Checking out the repo for writing

A repository can be checked out in two modes:

	write-enabled: applies all operations to the staging area’s current state. Only one write-enabled checkout can be active at a different time, must be closed upon last use, or manual intervention will be needed to remove the writer lock.

	read-only: checkout a commit or branch to view repository state as it existed at that point in time.

Lots of useful information is in the ipython __repr__

If you’re ever in doubt about what the state of the object your working on is, just call it’s reps, and the most relevant information will be sent to your screen!

[3]:

co = repo.checkout(write=True)
co

[3]:

Hangar WriterCheckout
 Writer : True
 Base Branch : master
 Num Arraysets : 0
 Num Metadata : 0

A checkout allows access to arraysets and metadata

The arrayset and metadata attributes of a checkout provide the interface to working with all of the data on disk!

[4]:

co.arraysets

[4]:

Hangar Arraysets
 Writeable: True
 Arrayset Names / Partial Remote References:
 -

[5]:

co.metadata

[5]:

Hangar Metadata
 Writeable: True
 Number of Keys: 0

Before data can be added to a repository, a arrayset must be initialized.

We’re going to first load up a the MNIST pickled dataset so it can be added to the repo!

[6]:

Load the dataset
with gzip.open('/Users/rick/projects/tensorwerk/hangar/dev/data/mnist.pkl.gz', 'rb') as f:
 train_set, valid_set, test_set = pickle.load(f, encoding='bytes')

def rescale(array):
 array = array * 256
 rounded = np.round(array)
 return rounded.astype(np.uint8())

sample_trimg = rescale(train_set[0][0])
sample_trlabel = np.array([train_set[1][0]])
trimgs = rescale(train_set[0])
trlabels = train_set[1]

Before data can be added to a repository, a arrayset must be initialized.

A Arrayset is a named grouping of data samples where each sample shares a number of similar attributes and array properties. See the docstrings in co.arraysets.init_arrayset:

Initializes a arrayset in the repository.

Arraysets are groups of related data pieces (samples). All samples within
a arrayset have the same data type, and number of dimensions. The size of
each dimension can be either fixed (the default behavior) or variable
per sample.

For fixed dimension sizes, all samples written to the arrayset must have
the same size that was initially specified upon arrayset initialization.
Variable size arraysets on the other hand, can write samples with
dimensions of any size less than a maximum which is required to be set
upon arrayset creation.

Parameters

name : str
 The name assigned to this arrayset.
shape : Union[int, Tuple[int]]
 The shape of the data samples which will be written in this arrayset.
 This argument and the `dtype` argument are required if a `prototype`
 is not provided, defaults to None.
dtype : np.dtype
 The datatype of this arrayset. This argument and the `shape` argument
 are required if a `prototype` is not provided., defaults to None.
prototype : np.ndarray
 A sample array of correct datatype and shape which will be used to
 initialize the arrayset storage mechanisms. If this is provided, the
 `shape` and `dtype` arguments must not be set, defaults to None.
named_samples : bool, optional
 If the samples in the arrayset have names associated with them. If set,
 all samples must be provided names, if not, no name will be assigned.
 defaults to True, which means all samples should have names.
variable_shape : bool, optional
 If this is a variable sized arrayset. If true, a the maximum shape is
 set from the provided `shape` or `prototype` argument. Any sample
 added to the arrayset can then have dimension sizes <= to this
 initial specification (so long as they have the same rank as what
 was specified) defaults to False.
backend : DEVELOPER USE ONLY. str, optional, kwarg only
 Backend which should be used to write the arrayset files on disk.

Returns

:class:`ArraysetDataWriter`
 instance object of the initialized arrayset.

Raises

ValueError
 If provided name contains any non ascii, non alpha-numeric characters.
ValueError
 If required `shape` and `dtype` arguments are not provided in absence of
 `prototype` argument.
ValueError
 If `prototype` argument is not a C contiguous ndarray.
ValueError
 If rank of maximum tensor shape > 31.
ValueError
 If zero sized dimension in `shape` argument
ValueError
 If the specified backend is not valid.

[7]:

co.arraysets.init_arrayset(name='mnist_training_images', prototype=trimgs[0])

[7]:

Hangar ArraysetDataWriter
 Arrayset Name : mnist_training_images
 Schema Hash : 976ba57033bb
 Variable Shape : False
 (max) Shape : (784,)
 Datatype : <class 'numpy.uint8'>
 Named Samples : True
 Access Mode : a
 Number of Samples : 0
 Partial Remote Data Refs : False

Interaction

Through arraysets attribute

When a arrayset is initialized, a arrayset accessor object will be returned, however, depending on your use case, this may or may not be the most convenient way to access a arrayset.

In general, we have implemented a full dict mapping interface on top of all object. To access the 'mnist_training_images' arrayset you can just use a dict style access like the following (note: if operating in ipython/jupyter, the arrayset keys will autocomplete for you).

The arrayset objects returned here contain many useful instrospecion methods which we will review over the rest of the turtorial

[8]:

co.arraysets['mnist_training_images']

[8]:

Hangar ArraysetDataWriter
 Arrayset Name : mnist_training_images
 Schema Hash : 976ba57033bb
 Variable Shape : False
 (max) Shape : (784,)
 Datatype : <class 'numpy.uint8'>
 Named Samples : True
 Access Mode : a
 Number of Samples : 0
 Partial Remote Data Refs : False

[9]:

train_aset = co.arraysets['mnist_training_images']

OR an equivalent way using the `.get()` method

train_aset = co.arraysets.get('mnist_training_images')
train_aset

[9]:

Hangar ArraysetDataWriter
 Arrayset Name : mnist_training_images
 Schema Hash : 976ba57033bb
 Variable Shape : False
 (max) Shape : (784,)
 Datatype : <class 'numpy.uint8'>
 Named Samples : True
 Access Mode : a
 Number of Samples : 0
 Partial Remote Data Refs : False

Through the checkout object (arrayset and sample access)

In addition to the standard co.arraysets access methods, we have implemented a convenience mapping to arraysets and samples (ie. data) for both reading and writing from the checkout object itself.

to get the same arrayset object from the checkout, simply use:

[10]:

train_asets = co['mnist_training_images']
train_asets

[10]:

Hangar ArraysetDataWriter
 Arrayset Name : mnist_training_images
 Schema Hash : 976ba57033bb
 Variable Shape : False
 (max) Shape : (784,)
 Datatype : <class 'numpy.uint8'>
 Named Samples : True
 Access Mode : a
 Number of Samples : 0
 Partial Remote Data Refs : False

Though that works as expected, most use cases will take advantage of adding and reading data from multiple arraysets / samples at a time. This is shown in the next section

Adding Data

To add data to a named arrayset, we can use dict-style setting, or the .add method. Sample keys can be either str or int type.

[11]:

train_aset['0'] = trimgs[0]
train_aset.add(data=trimgs[1], name='1')
train_aset[51] = trimgs[51]

Using the checkout method

[12]:

co['mnist_training_images', 60] = trimgs[60]

How many samples are in the arrayset?

[13]:

len(train_aset)

[13]:

4

Containment Testing

[14]:

'hi' in train_aset

[14]:

False

[15]:

'0' in train_aset

[15]:

True

[16]:

60 in train_aset

[16]:

True

Dictionary Style Retrieval for known keys

[17]:

out1 = train_aset['0']
OR
out2 = co['mnist_training_images', '0']

print(np.allclose(out1, out2))

plt.imshow(out1.reshape(28, 28))

True

[17]:

<matplotlib.image.AxesImage at 0x38476ea90>

[image: _images/Tutorial-001_30_2.png]

Dict style iteration supported out of the box

[18]:

iterate normally over keys

for k in train_aset:
 # equivalent method: for k in train_aset.keys():
 print(k)

iterate over items (plot results)

fig, axs = plt.subplots(nrows=1, ncols=4, figsize=(10, 10))

for idx, v in enumerate(train_aset.values()):
 axs[idx].imshow(v.reshape(28, 28))
plt.show()

iterate over items, store k, v in dict

myDict = {}
for k, v in train_aset.items():
 myDict[k] = v

0
1
51
60

[image: _images/Tutorial-001_32_1.png]

Performance

Once you’ve completed an interactive exploration, be sure to use the context manager form of the .add and .get methods!

In order to make sure that all your data is always safe in Hangar, the backend diligently ensures that all contexts (operations which can somehow interact with the record structures) are opened and closed appropriately. When you use the context manager form of a arrayset object, we can offload a significant amount of work to the python runtime, and dramatically increase read and write speeds.

Most arraysets we’ve tested see an increased throughput differential of 250% - 500% for writes and 300% - 600% for reads when comparing using the context manager form vs the naked form!

[27]:

import time

----------------- Non Context Manager Form ----------------------

co = repo.checkout(write=True)
aset_trimgs = co.arraysets.init_arrayset(name='train_images', prototype=sample_trimg)
aset_trlabels = co.arraysets.init_arrayset(name='train_labels', prototype=sample_trlabel)

print(f'beginning non-context manager form')
start_time = time.time()

for idx, img in enumerate(trimgs):
 aset_trimgs.add(data=img, name=idx)
 aset_trlabels.add(data=np.array([trlabels[idx]]), name=str(idx))

print(f'Finished non-context manager form in: {time.time() - start_time} seconds')

co.reset_staging_area()
co.close()

----------------- Context Manager Form --------------------------

co = repo.checkout(write=True)
aset_trimgs = co.arraysets.init_arrayset(name='train_images', prototype=sample_trimg)
aset_trlabels = co.arraysets.init_arrayset(name='train_labels', prototype=sample_trlabel)

print(f'\n beginning context manager form')
start_time = time.time()

with aset_trimgs, aset_trlabels:
 for idx, img in enumerate(trimgs):
 aset_trimgs.add(data=img, name=str(idx))
 aset_trlabels.add(data=np.array([trlabels[idx]]), name=str(idx))

print(f'Finished context manager form in: {time.time() - start_time} seconds')

co.reset_staging_area()
co.close()

-------------- Context Manager With Checkout Access -------------

co = repo.checkout(write=True)
co.arraysets.init_arrayset(name='train_images', prototype=sample_trimg)
co.arraysets.init_arrayset(name='train_labels', prototype=sample_trlabel)

print(f'\n beginning context manager form with checkout access')
start_time = time.time()

with co:
 for idx, img in enumerate(trimgs):
 co[['train_images', 'train_labels'], idx] = [img, np.array([trlabels[idx]])]

print(f'Finished context manager with checkout form in: {time.time() - start_time} seconds')

co.close()

beginning non-context manager form
Finished non-context manager form in: 107.4064199924469 seconds
Hard reset requested with writer_lock: 5b66da6a-51c5-4beb-9b34-964c600957c2

 beginning context manager form
Finished context manager form in: 20.784971952438354 seconds
Hard reset requested with writer_lock: 6bd0f286-e78f-4777-939b-ab9a60c6518e

 beginning context manager form with checkout access
Finished context manager with checkout form in: 20.909255981445312 seconds

Clearly, the context manager form is far and away superior, however we fell that for the purposes of interactive use that the “Naked” form is valubal to the average user!

Commiting Changes

Once you have made a set of changes you wan’t to commit, just simply call the commit() method (and pass in a message)!

[30]:

co.commit('hello world, this is my first hangar commit')

[30]:

'e11d061dc457b361842801e24cbd119a745089d6'

The returned value ('e11d061dc457b361842801e24cbd119a745089d6') is the commit hash of this commit. It may be useful to assign this to a variable and follow this up by creating a branch from this commit! (Branching to be covered in the next round of tutorials)

Don’t Forget to Close the Write-Enabled Checkout to Release the Lock!

We mentioned in Checking out the repo for writing_ that when a write-enabled checkout is created, it places a lock on writers until it is closed. If for whatever reason the program terminates via a non python SIGKILL or fatal interpreter error without closing the write-enabled checkout, this lock will persist (forever technically, but realistically until it is manually freed).

Luckily, preventing this issue from occurring is as simple as calling close()!

If you forget, normal interperter shutdown should trigger an atexit hook automatically, however this behavior should not be relied upon. better to just call close()

[31]:

co.close()

But if you did forget, and you recieve a PermissionError next time you open a checkout

PermissionError: Cannot aquire the writer lock. Only one instance of
a writer checkout can be active at a time. If the last checkout of this
repository did not properly close, or a crash occured, the lock must be
manually freed before another writer can be instantiated.

You can manually free the lock with the following method. However!

This is a dangerous operation, and is one of the only ways where a user can put data in their repository at risk! If another python process is still holding the lock, do NOT force the release. Kill the process (that’s totally fine to do at any time, then force the lock release).

[32]:

repo.force_release_writer_lock()

[32]:

True

Inspecting state from the top!

After your first commit, the summary and log methods will begin to work, and you can either print the stream to the console (as shown below), or you can dig deep into the internal of how hangar thinks about your data! (To be covered in an advanced tutorial later on).

The point is, regardless of your level of interaction with a live hangar repository, all level of state is accessable from the top, and in general has been built to be the only way to directly access it!

[33]:

repo.summary()

Summary of Contents Contained in Data Repository

==================
Repository Info
Base Directory: /Users/rick/projects/tensorwerk/hangar/dev/mnist
Disk Usage: 67.29 MB

===================
Commit Details
Commit: e11d061dc457b361842801e24cbd119a745089d6
Created: Thu Sep 5 23:32:46 2019
By: Rick Izzo
Email: rick@tensorwerk.com
Message: hello world, this is my first hangar commit

==================
DataSets
Number of Named Arraysets: 3
* Arrayset Name: mnist_training_images
Num Arrays: 4
Details:
- schema_hash: 976ba57033bb
- schema_dtype: 2
- schema_is_var: False
- schema_max_shape: (784,)
- schema_is_named: True
- schema_default_backend: 00
* Arrayset Name: train_images
Num Arrays: 50000
Details:
- schema_hash: 976ba57033bb
- schema_dtype: 2
- schema_is_var: False
- schema_max_shape: (784,)
- schema_is_named: True
- schema_default_backend: 00
* Arrayset Name: train_labels
Num Arrays: 50000
Details:
- schema_hash: 631f0f57c469
- schema_dtype: 7
- schema_is_var: False
- schema_max_shape: (1,)
- schema_is_named: True
- schema_default_backend: 10

==================
Metadata:
Number of Keys: 0

[34]:

repo.log()

* e11d061dc457b361842801e24cbd119a745089d6 (master) : hello world, this is my first hangar commit
* 7293dded698c41f32434e670841d15d96c1c6f8b : ya

Part 2: Checkouts, Branching, & Merging

This section deals with navigating repository history, creating & merging branches, and understanding conflicts

The Hangar Workflow

The hangar workflow is intended to mimic common git workflows in which small incremental changes are made and committed on dedicated topic branches. After the topic has been adequatly set, topic branch is merged into a separate branch (commonly referred to as master, though it need not be the actual branch named "master"), where well vetted and more permanent changes are kept.

Create Branch -> Checkout Branch -> Make Changes -> Commit

Making the Initial Commit

Let’s initialize a new repository and see how branching works in Hangar

[1]:

from hangar import Repository
import numpy as np

[2]:

repo = Repository(path='foo/pth')

[3]:

repo_pth = repo.init(user_name='Test User', user_email='test@foo.com')

When a repository is first initialized, it has no history, no commits.

[3]:

repo.log() # -> returns None

Though the repository is essentially empty at this point in time, there is one thing which is present: A branch with the name: "master".

[4]:

repo.list_branches()

[4]:

['master']

This "master" is the branch we make our first commit on; until we do, the repository is in a semi-unstable state; with no history or contents, most of the functionality of a repository (to store, retrieve, and work with versions of data across time) just isn’t possible. A significant potion of otherwise standard operations will generally flat out refuse to to execute (ie. read-only checkouts, log, push, etc.) until the first commit is made.

One of the only options available at this point in time is to create a write-enabled checkout on the "master" branch and begin to add data so we can make a commit. let’s do that now:

[5]:

co = repo.checkout(write=True)

As expected, there are no arraysets or metadata samples recorded in the checkout.

[6]:

print(f'number of metadata keys: {len(co.metadata)}')
print(f'number of arraysets: {len(co.arraysets)}')

number of metadata keys: 0
number of arraysets: 0

Let’s add a dummy array just to put something in the repository history to commit. We’ll then close the checkout so we can explore some useful tools which depend on having at least on historical record (commit) in the repo.

[7]:

dummy = np.arange(10, dtype=np.uint16)
aset = co.arraysets.init_arrayset(name='dummy_arrayset', prototype=dummy)
aset['0'] = dummy
initialCommitHash = co.commit('first commit with a single sample added to a dummy arrayset')
co.close()

If we check the history now, we can see our first commit hash, and that it is labeled with the branch name "master"

[8]:

repo.log()

* 8c71efea1a095438c9ea75bea80ec35c883ac4c9 (master) : first commit with a single sample added to a dummy arrayset

So now our repository contains: - A commit: a fully independent description of the entire repository state as it existed at some point in time. A commit is identified by a commit_hash - A branch: a label pointing to a particular commit / commit_hash

Once committed, it is not possible to remove, modify, or otherwise tamper with the contents of a commit in any way. It is a permanent record, which Hangar has no method to change once written to disk.

In addition, as a commit_hash is not only calculated from the commit ’s contents, but from the commit_hash of its parents (more on this to follow), knowing a single top-level commit_hash allows us to verify the integrity of the entire repository history. This fundamental behavior holds even in cases of disk-corruption or malicious use.

Working with Checkouts & Branches

As mentioned in the first tutorial, we work with the data in a repository though a checkout. There are two types of checkouts (each of which have different uses and abilities):

Checking out a branch/commit for reading: is the process of retrieving records describing repository state at some point in time, and setting up access to the referenced data.

	Any number of read checkout processes can operate on a repository (on any number of commits) at the same time.

Checking out a branch for writing: is the process of setting up a (mutable) staging area to temporarily gather record references / data before all changes have been made and staging area contents are committed in a new permanent record of history (a commit)

	Only one write-enabled checkout can ever be operating in a repository at a time

	When initially creating the checkout, the staging area is not actually “empty”. Instead, it has the full contents of the last commit referenced by a branch’s HEAD. These records can be removed/mutated/added to in any way to form the next commit. The new commit retains a permanent reference identifying the previous HEAD commit was used as it’s base staging area

	On commit, the branch which was checked out has it’s HEAD pointer value updated to the new commit ’s commit_hash. A write-enabled checkout starting from the same branch will now use that commit ’s record content as the base for it’s staging area.

Creating a branch

A branch is an individual series of changes/commits which diverge from the main history of the repository at some point in time. All changes made along a branch are completely isolated from those on other branches. After some point in time, changes made in a disparate branches can be unified through an automatic merge process (described in detail later in this tutorial). In general, the Hangar branching model is semantically identical Git; Hangar branches also have the same
lightweight and performant properties which make working with Git branches so appealing.

In hangar, branch must always have a name and a base_commit. However, If no base_commit is specified, the current writer branch HEAD commit is used as the base_commit hash for the branch automatically.

[9]:

branch_1 = repo.create_branch(name='testbranch')

[10]:

branch_1

[10]:

'testbranch'

viewing the log, we see that a new branch named: testbranch is pointing to our initial commit

[11]:

print(f'branch names: {repo.list_branches()} \n')
repo.log()

branch names: ['master', 'testbranch']

* 8c71efea1a095438c9ea75bea80ec35c883ac4c9 (master) (testbranch) : first commit with a single sample added to a dummy arrayset

If instead, we do actually specify the base commit (with a different branch name) we see we do actually get a third branch. pointing to the same commit as "master" and "testbranch"

[12]:

branch_2 = repo.create_branch(name='new', base_commit=initialCommitHash)

[13]:

branch_2

[13]:

'new'

[14]:

repo.log()

* 8c71efea1a095438c9ea75bea80ec35c883ac4c9 (master) (new) (testbranch) : first commit with a single sample added to a dummy arrayset

Making changes on a branch

Let’s make some changes on the "new" branch to see how things work. We can see that the data we added previously is still here (dummy arrayset containing one sample labeled 0)

[15]:

co = repo.checkout(write=True, branch='new')

[16]:

co.arraysets

[16]:

Hangar Arraysets
 Writeable: True
 Arrayset Names / Partial Remote References:
 - dummy_arrayset / False

[17]:

co.arraysets['dummy_arrayset']

[17]:

Hangar ArraysetDataWriter
 Arrayset Name : dummy_arrayset
 Schema Hash : 43edf7aa314c
 Variable Shape : False
 (max) Shape : (10,)
 Datatype : <class 'numpy.uint16'>
 Named Samples : True
 Access Mode : a
 Number of Samples : 1
 Partial Remote Data Refs : False

[18]:

co.arraysets['dummy_arrayset']['0']

[18]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint16)

Let’s add another sample to the dummy_arrayset called 1

[19]:

arr = np.arange(10, dtype=np.uint16)
let's increment values so that `0` and `1` aren't set to the same thing
arr += 1

co['dummy_arrayset', '1'] = arr

We can see that in this checkout, there are indeed, two samples in the dummy_arrayset

[20]:

len(co.arraysets['dummy_arrayset'])

[20]:

2

That’s all, let’s commit this and be done with this branch

[21]:

co.commit('commit on `new` branch adding a sample to dummy_arrayset')
co.close()

How do changes appear when made on a branch?

If we look at the log, we see that the branch we were on (new) is a commit ahead of master and testbranch

[22]:

repo.log()

* 7a47b8c33a8fa52d15a02d8ecc293039ab6be128 (new) : commit on `new` branch adding a sample to dummy_arrayset
* 8c71efea1a095438c9ea75bea80ec35c883ac4c9 (master) (testbranch) : first commit with a single sample added to a dummy arrayset

The meaning is exactly what one would intuit. we made some changes, they were reflected on the new branch, but the master and testbranch branches were not impacted at all, nor were any of the commits!

Merging (Part 1) Fast-Forward Merges

Say we like the changes we made on the new branch so much that we want them to be included into our master branch! How do we make this happen for this scenario??

Well, the history between the HEAD of the "new" and the HEAD of the "master" branch is perfectly linear. In fact, when we began making changes on "new", our staging area was identical to what the "master" HEAD commit references are right now!

If you’ll remember that a branch is just a pointer which assigns some name to a commit_hash, it becomes apparent that a merge in this case really doesn’t involve any work at all. With a linear history between "master" and "new", any commits exsting along the path between the HEAD of "new" and "master" are the only changes which are introduced, and we can be sure that this is the only view of the data records which can exist!

What this means in practice is that for this type of merge, we can just update the HEAD of "master" to point to the "HEAD" of "new", and the merge is complete.

This situation is referred to as a Fast Forward (FF) Merge. A FF merge is safe to perform any time a linear history lies between the "HEAD" of some topic and base branch, regardless of how many commits or changes which were introduced.

For other situations, a more complicated Three Way Merge is required. This merge method will be explained a bit more later in this tutorial

[23]:

co = repo.checkout(write=True, branch='master')

Performing the Merge

In practice, you’ll never need to know the details of the merge theory explained above (or even remember it exists). Hangar automatically figures out which merge algorithms should be used and then performed whatever calculations are needed to compute the results.

As a user, merging in Hangar is a one-liner!

[24]:

co.merge(message='message for commit (not used for FF merge)', dev_branch='new')

Selected Fast-Forward Merge Strategy

[24]:

'7a47b8c33a8fa52d15a02d8ecc293039ab6be128'

Let’s check the log!

[25]:

repo.log()

* 7a47b8c33a8fa52d15a02d8ecc293039ab6be128 (master) (new) : commit on `new` branch adding a sample to dummy_arrayset
* 8c71efea1a095438c9ea75bea80ec35c883ac4c9 (testbranch) : first commit with a single sample added to a dummy arrayset

[26]:

co.branch_name

[26]:

'master'

[27]:

co.commit_hash

[27]:

'7a47b8c33a8fa52d15a02d8ecc293039ab6be128'

[28]:

co.arraysets['dummy_arrayset']

[28]:

Hangar ArraysetDataWriter
 Arrayset Name : dummy_arrayset
 Schema Hash : 43edf7aa314c
 Variable Shape : False
 (max) Shape : (10,)
 Datatype : <class 'numpy.uint16'>
 Named Samples : True
 Access Mode : a
 Number of Samples : 2
 Partial Remote Data Refs : False

As you can see, everything is as it should be!

[29]:

co.close()

Making a changes to introduce diverged histories

Let’s now go back to our "testbranch" branch and make some changes there so we can see what happens when changes don’t follow a linear history.

[30]:

co = repo.checkout(write=True, branch='testbranch')

[31]:

co.arraysets

[31]:

Hangar Arraysets
 Writeable: True
 Arrayset Names / Partial Remote References:
 - dummy_arrayset / False

[32]:

co.arraysets['dummy_arrayset']

[32]:

Hangar ArraysetDataWriter
 Arrayset Name : dummy_arrayset
 Schema Hash : 43edf7aa314c
 Variable Shape : False
 (max) Shape : (10,)
 Datatype : <class 'numpy.uint16'>
 Named Samples : True
 Access Mode : a
 Number of Samples : 1
 Partial Remote Data Refs : False

We will start by mutating sample 0 in dummy_arrayset to a different value

[33]:

old_arr = co['dummy_arrayset', '0']
new_arr = old_arr + 50
new_arr

[33]:

array([50, 51, 52, 53, 54, 55, 56, 57, 58, 59], dtype=uint16)

[35]:

co['dummy_arrayset', '0'] = new_arr

let’s make a commit here, then add some metadata and make a new commit (all on the testbranch branch)

[36]:

co.commit('mutated sample `0` of `dummy_arrayset` to new value')

[36]:

'1fec4594ac714dbfe56ceafad83c4f2c0006b2af'

[37]:

repo.log()

* 1fec4594ac714dbfe56ceafad83c4f2c0006b2af (testbranch) : mutated sample `0` of `dummy_arrayset` to new value
* 8c71efea1a095438c9ea75bea80ec35c883ac4c9 : first commit with a single sample added to a dummy arrayset

[38]:

co.metadata['hello'] = 'world'

[39]:

co.commit('added hellow world metadata')

[39]:

'be6e14dc6dd70a26816e582fa6614e86361a7a7a'

[40]:

co.close()

Looking at our history how, we see that none of the original branches reference our first commit anymore

[41]:

repo.log()

* be6e14dc6dd70a26816e582fa6614e86361a7a7a (testbranch) : added hellow world metadata
* 1fec4594ac714dbfe56ceafad83c4f2c0006b2af : mutated sample `0` of `dummy_arrayset` to new value
* 8c71efea1a095438c9ea75bea80ec35c883ac4c9 : first commit with a single sample added to a dummy arrayset

We can check the history of the "master" branch by specifying it as an argument to the log() method

[42]:

repo.log('master')

* 7a47b8c33a8fa52d15a02d8ecc293039ab6be128 (master) (new) : commit on `new` branch adding a sample to dummy_arrayset
* 8c71efea1a095438c9ea75bea80ec35c883ac4c9 : first commit with a single sample added to a dummy arrayset

Merging (Part 2) Three Way Merge

If we now want to merge the changes on "testbranch" into "master", we can’t just follow a simple linear history; the branches have diverged.

For this case, Hangar implements a Three Way Merge algorithm which does the following: - Find the most recent common ancestor commit present in both the "testbranch" and "master" branches - Compute what changed between the common ancestor and each branch’s HEAD commit - Check if any of the changes conflict with eachother (more on this in a later tutorial) - If no conflicts are present, compute the results of the merge between the two sets of changes - Create a new commit
containing the merge results reference both branch HEADs as parents of the new commit, and update the base branch HEAD to that new commit’s commit_hash

[43]:

co = repo.checkout(write=True, branch='master')

Once again, as a user, the details are completely irrelevant, and the operation occurs from the same one-liner call we used before for the FF Merge.

[44]:

co.merge(message='merge of testbranch into master', dev_branch='testbranch')

Selected 3-Way Merge Strategy

[44]:

'ced9522accb69a165e8f111d1325b78eb756551e'

If we now look at the log, we see that this has a much different look then before. The three way merge results in a history which references changes made in both diverged branches, and unifies them in a single commit

[45]:

repo.log()

* ced9522accb69a165e8f111d1325b78eb756551e (master) : merge of testbranch into master
|\
| * be6e14dc6dd70a26816e582fa6614e86361a7a7a (testbranch) : added hellow world metadata
| * 1fec4594ac714dbfe56ceafad83c4f2c0006b2af : mutated sample `0` of `dummy_arrayset` to new value
* | 7a47b8c33a8fa52d15a02d8ecc293039ab6be128 (new) : commit on `new` branch adding a sample to dummy_arrayset
|/
* 8c71efea1a095438c9ea75bea80ec35c883ac4c9 : first commit with a single sample added to a dummy arrayset

Manually inspecting the merge result to verify it matches our expectations

dummy_arrayset should contain two arrays, key 1 was set in the previous commit originally made in "new" and merged into "master". Key 0 was mutated in "testbranch" and unchanged in "master", so the update from "testbranch" is kept.

There should be one metadata sample with they key "hello" and the value "world"

[46]:

co.arraysets

[46]:

Hangar Arraysets
 Writeable: True
 Arrayset Names / Partial Remote References:
 - dummy_arrayset / False

[47]:

co.arraysets['dummy_arrayset']

[47]:

Hangar ArraysetDataWriter
 Arrayset Name : dummy_arrayset
 Schema Hash : 43edf7aa314c
 Variable Shape : False
 (max) Shape : (10,)
 Datatype : <class 'numpy.uint16'>
 Named Samples : True
 Access Mode : a
 Number of Samples : 2
 Partial Remote Data Refs : False

[48]:

co['dummy_arrayset', ['0', '1']]

[48]:

[array([50, 51, 52, 53, 54, 55, 56, 57, 58, 59], dtype=uint16),
 array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=uint16)]

[49]:

co.metadata

[49]:

Hangar Metadata
 Writeable: True
 Number of Keys: 1

[50]:

co.metadata['hello']

[50]:

'world'

The Merge was a success!

[51]:

co.close()

Conflicts

Now that we’ve seen merging in action, the next step is to talk about conflicts.

How Are Conflicts Detected?

Any merge conflicts can be identified and addressed ahead of running a merge command by using the built in diff tools. When diffing commits, Hangar will provide a list of conflicts which it identifies. In general these fall into 4 categories:

	Additions in both branches which created new keys (samples / arraysets / metadata) with non-compatible values. For samples & metadata, the hash of the data is compared, for arraysets, the schema specification is checked for compatibility in a method custom to the internal workings of Hangar.

	Removal in Master Commit/Branch & Mutation in Dev Commit / Branch. Applies for samples, arraysets, and metadata identically.

	Mutation in Dev Commit/Branch & Removal in Master Commit / Branch. Applies for samples, arraysets, and metadata identically.

	Mutations on keys both branches to non-compatible values. For samples & metadata, the hash of the data is compared, for arraysets, the schema specification is checked for compatibility in a method custom to the internal workings of Hangar.

Let’s make a merge conflict

To force a conflict, we are going to checkout the "new" branch and set the metadata key "hello" to the value "foo conflict... BOO!". If we then try to merge this into the "testbranch" branch (which set "hello" to a value of "world") we see how hangar will identify the conflict and halt without making any changes.

Automated conflict resolution will be introduced in a future version of Hangar, for now it is up to the user to manually resolve conflicts by making any necessary changes in each branch before reattempting a merge operation.

[52]:

co = repo.checkout(write=True, branch='new')

[53]:

co.metadata['hello'] = 'foo conflict... BOO!'

[54]:

co.commit ('commit on new branch to hello metadata key so we can demonstrate a conflict')

[54]:

'25c54d46b284fc61802dcf7728f5ae6a047e6486'

[55]:

repo.log()

* 25c54d46b284fc61802dcf7728f5ae6a047e6486 (new) : commit on new branch to hello metadata key so we can demonstrate a conflict
* 7a47b8c33a8fa52d15a02d8ecc293039ab6be128 : commit on `new` branch adding a sample to dummy_arrayset
* 8c71efea1a095438c9ea75bea80ec35c883ac4c9 : first commit with a single sample added to a dummy arrayset

When we attempt the merge, an exception is thrown telling us there is a conflict!

[56]:

co.merge(message='this merge should not happen', dev_branch='testbranch')

Selected 3-Way Merge Strategy

ValueError Traceback (most recent call last)
<ipython-input-56-1a98dce1852b> in <module>
----> 1 co.merge(message='this merge should not happen', dev_branch='testbranch')

~/projects/tensorwerk/hangar/hangar-py/src/hangar/checkout.py in merge(self, message, dev_branch)
 1231 dev_branch=dev_branch,
 1232 repo_path=self._repo_path,
-> 1233 writer_uuid=self._writer_lock)
 1234
 1235 for asetHandle in self._arraysets.values():

~/projects/tensorwerk/hangar/hangar-py/src/hangar/merger.py in select_merge_algorithm(message, branchenv, stageenv, refenv, stagehashenv, master_branch, dev_branch, repo_path, writer_uuid)
 123
 124 except ValueError as e:
--> 125 raise e from None
 126
 127 finally:

~/projects/tensorwerk/hangar/hangar-py/src/hangar/merger.py in select_merge_algorithm(message, branchenv, stageenv, refenv, stagehashenv, master_branch, dev_branch, repo_path, writer_uuid)
 120 refenv=refenv,
 121 stagehashenv=stagehashenv,
--> 122 repo_path=repo_path)
 123
 124 except ValueError as e:

~/projects/tensorwerk/hangar/hangar-py/src/hangar/merger.py in _three_way_merge(message, master_branch, masterHEAD, dev_branch, devHEAD, ancestorHEAD, branchenv, stageenv, refenv, stagehashenv, repo_path)
 247 if conflict.conflict is True:
 248 msg = f'HANGAR VALUE ERROR:: Merge ABORTED with conflict: {conflict}'
--> 249 raise ValueError(msg) from None
 250
 251 with mEnv.begin(write=True) as txn:

ValueError: HANGAR VALUE ERROR:: Merge ABORTED with conflict: Conflicts(t1=[(b'l:hello', b'618dd0fcd2ebdd2827ce29a7a10188162ff8005a')], t21=[], t22=[], t3=[], conflict=True)

Checking for Conflicts

Alternatively, use the diff methods on a checkout to test for conflicts before attempting a merge.

[57]:

merge_results, conflicts_found = co.diff.branch('testbranch')

[58]:

conflicts_found

[58]:

Conflicts(t1=Changes(schema={}, samples={}, metadata={MetadataRecordKey(meta_name='hello'): MetadataRecordVal(meta_hash='618dd0fcd2ebdd2827ce29a7a10188162ff8005a')}), t21=Changes(schema={}, samples={}, metadata={}), t22=Changes(schema={}, samples={}, metadata={}), t3=Changes(schema={}, samples={}, metadata={}), conflict=True)

[63]:

conflicts_found.t1.metadata

[63]:

{MetadataRecordKey(meta_name='hello'): MetadataRecordVal(meta_hash='618dd0fcd2ebdd2827ce29a7a10188162ff8005a')}

The type codes for a Conflicts namedtuple such as the one we saw:

Conflicts(t1=('hello',), t21=(), t22=(), t3=(), conflict=True)

are as follow:

	t1: Addition of key in master AND dev with different values.

	t21: Removed key in master, mutated value in dev.

	t22: Removed key in dev, mutated value in master.

	t3: Mutated key in both master AND dev to different values.

	conflict: Bool indicating if any type of conflict is present.

To resolve, remove the conflict

[64]:

del co.metadata['hello']
co.metadata['resolved'] = 'conflict by removing hello key'
co.commit('commit which removes conflicting metadata key')

[64]:

'9691fef05323b9cd6a4869b32faacbe81515dfed'

[65]:

co.merge(message='this merge succeeds as it no longer has a conflict', dev_branch='testbranch')

Selected 3-Way Merge Strategy

[65]:

'e760b3c5cf9e912b5739eb6693df8942eda72d42'

We can verify that history looks as we would expect via the log!

[66]:

repo.log()

* e760b3c5cf9e912b5739eb6693df8942eda72d42 (new) : this merge succeeds as it no longer has a conflict
|\
* | 9691fef05323b9cd6a4869b32faacbe81515dfed : commit which removes conflicting metadata key
* | 25c54d46b284fc61802dcf7728f5ae6a047e6486 : commit on new branch to hello metadata key so we can demonstrate a conflict
| * be6e14dc6dd70a26816e582fa6614e86361a7a7a (testbranch) : added hellow world metadata
| * 1fec4594ac714dbfe56ceafad83c4f2c0006b2af : mutated sample `0` of `dummy_arrayset` to new value
* | 7a47b8c33a8fa52d15a02d8ecc293039ab6be128 : commit on `new` branch adding a sample to dummy_arrayset
|/
* 8c71efea1a095438c9ea75bea80ec35c883ac4c9 : first commit with a single sample added to a dummy arrayset

[]:

Part 3: Working With Remote Servers

This tutorial will introduce how to start a remote Hangar server, and how to work with remotes from the client side.

Particular attention is paid to the concept of a *partially fetch* / *partial clone* operations. This is a key component of the Hangar design which provides the ability to quickly and efficiently work with data contained in remote repositories whose full size would be significatly prohibitive to local use under most circumstances.

Note:

At the time of writing, the API, user-facing functionality, client-server negotiation protocols, and test coverage of the remotes implementation is generally adqequate for this to serve as an “alpha” quality preview. However, please be warned that significantly less time has been spent in this module to optimize speed, refactor for simplicity, and assure stability under heavy loads than the rest of the Hangar core. While we can guarrentee that your data is secure on disk, you may experience
crashes from time to time when working with remotes. In addition, sending data over the wire should NOT be considered secure in ANY way. No in-transit encryption, user authentication, or secure access limitations are implemented at this moment. We realize the importance of these types of protections, and they are on our radar for the next release cycle. If you are interested in making a contribution to Hangar, this module contains a lot of low hanging fruit which would would provide drastic
improvements and act as a good intro the the internal Hangar data model. Please get in touch with us to discuss!

Starting a Hangar Server

To start a hangar server, navigate to the command line and simply execute:

$ hangar server

This will get a local server instanse running at localhost:50051. The IP and port can be configured by setting the --ip and --port flags to the desired values at the command line

A blocking process will begin in that terminal session. Leave it running while you experiment with connecting from a client repo

Using Remotes with a Local Repository

The CLI is the easiest way to interact with the remote server from a local repository (Though all functioanlity is mirrorred via the repository API (more on that later).

Before we begin we will set up a repository with some data, a few commits, two branches, and a merge

Setup a Test Repo

As normal, we shall begin with creating a repository and adding some data. This should be familiar to you from previous tutorials

[1]:

from hangar import Repository
import numpy as np
from tqdm import tqdm

testData = np.loadtxt('/Users/rick/projects/tensorwerk/hangar/dev/data/dota2Dataset/dota2Test.csv', delimiter=',', dtype=np.uint8)
trainData = np.loadtxt('/Users/rick/projects/tensorwerk/hangar/dev/data/dota2Dataset/dota2Train.csv', delimiter=',', dtype=np.uint16)

testName = 'test'
testPrototype = testData[0]
trainName = 'train'
trainPrototype = trainData[0]

[2]:

repo = Repository('/Users/rick/projects/tensorwerk/hangar/dev/intro/')
repo.init(user_name='Rick Izzo', user_email='rick@tensorwerk.com', remove_old=True)
co = repo.checkout(write=True)

Hangar Repo initialized at: /Users/rick/projects/tensorwerk/hangar/dev/intro/.hangar

[3]:

co.arraysets.init_arrayset(name=testName, prototype=testPrototype, named_samples=False)
testaset = co.arraysets[testName]

pbar = tqdm(total=testData.shape[0])
with testaset as ds:
 for gameIdx, gameData in enumerate(testData):
 if (gameIdx % 500 == 0):
 pbar.update(500)
 ds.add(gameData)
pbar.close()

co.commit('initial commit on master with test data')

repo.create_branch('add-train')
co.close()
repo.log()

10500it [00:00, 22604.66it/s]

* 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f (add-train) (master) : initial commit on master with test data

[4]:

co = repo.checkout(write=True, branch='add-train')

co.arraysets.init_arrayset(name=trainName, prototype=trainPrototype, named_samples=False)
trainaset = co.arraysets[trainName]

pbar = tqdm(total=trainData.shape[0])
with trainaset as dt:
 for gameIdx, gameData in enumerate(trainData):
 if (gameIdx % 500 == 0):
 pbar.update(500)
 dt.add(gameData)
pbar.close()

co.commit('added training data on another branch')
co.close()
repo.log()

93000it [00:03, 23300.08it/s]

* 903fa337a6d1925f82a1700ad76f6c074eec8d7b (add-train) : added training data on another branch
* 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f (master) : initial commit on master with test data

[5]:

co = repo.checkout(write=True, branch='master')
co.metadata['earaea'] = 'eara'
co.commit('more changes here')
co.close()
repo.log()

* b119a4db817d9a4120593938ee4115402aa1405f (master) : more changes here
* 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f : initial commit on master with test data

Pushing to a Remote

We will use the API to add a remote, however, this can also be done wtih the CLI command:

$ hangar remote add origin localhost:50051

[6]:

repo.remote.add('origin', 'localhost:50051')

[6]:

RemoteInfo(name='origin', address='localhost:50051')

Pushing is as simple as running a simple command from the CLI or API:

$ hangar push origin master

Push the “master” branch

[7]:

repo.remote.push('origin', 'master')

counting objects: 100%|██████████| 2/2 [00:00<00:00, 13.31it/s]
pushing schemas: 100%|██████████| 1/1 [00:00<00:00, 273.60it/s]
pushing data: 10295it [00:00, 27622.34it/s]
pushing metadata: 100%|██████████| 1/1 [00:00<00:00, 510.94it/s]
pushing commit refs: 100%|██████████| 2/2 [00:00<00:00, 36.52it/s]

[7]:

'master'

Push the “add-train” branch

[8]:

repo.remote.push('origin', 'add-train')

counting objects: 100%|██████████| 1/1 [00:00<00:00, 1.14it/s]
pushing schemas: 100%|██████████| 1/1 [00:00<00:00, 464.02it/s]
pushing data: 92651it [00:04, 6427.60it/s]
pushing metadata: 0it [00:00, ?it/s]
pushing commit refs: 100%|██████████| 1/1 [00:00<00:00, 3.68it/s]

[8]:

'add-train'

Details of the Negotiation Processs

(The following details are not necessary to use the system, but may be of interest to some readers)

When we push data, we perform a negotation with the server which basically occurs like this:

	Hi, I would like to push this branch, do you have it?

	If yes, what is the latest commit you record on it?

	Is that the same commit I’m trying to push? if yes, abort

	Is that a commit I dont have? If yes, someone else has updated that branch, abort

	Here’s the commit digests which are parents of my branches head, which commits are you missing?

	Ok great, I’m going to scan through each of those commits to find the data hashes they contain. Tell me which ones you are missing.

	Thanks, now I’ll send you all of the data corresponding to those hashes. It might be a lot of data, so we’ll handle this in batches so that if my connection cuts out, we can resume this later

	Now that you have the data, I’m going to send the actual commit references for you to store, this isn’t that much information, but you’ll be sure to verify that I’m not trying to pull any funny buisness and send you incorrect data.

	Now that you’ve recieved everything, and have verified it matches what I told you it is, go ahead and make those commits I’ve pushed available as the HEAD of the branch I just sent. It’s some good work that others will want!

When we want to fetch updates to a branch, essentially the exact same thing happens in reverse. Instead of asking the server what it doesn’t have, we ask it what it does have, and then request the stuff that we are missing!

Partial Fetching and Clones

Now we will introduce one of the most important and unique features of Hangar remotes: Partial fetch/clone of data!

There is a very real problem with keeping the full history of data - **it’s huge*!* The size of data can very easily exceeds what can fit on (most) contributors laptops or personal workstations. This section explains how Hangar can handle working with arraysets which are prohibitively large to download or store on a single machine.

As mentioned in High Performance From Simplicity, under the hood Hangar deals with “Data” and “Bookkeeping” completely separately. We’ve previously covered what exactly we mean by Data in How Hangar Thinks About Data, so we’ll briefly cover the second major component of Hangar here. In short “Bookkeeping” describes everything about the repository. By everything, we do mean that the Bookkeeping records describe everything: all commits, parents, branches, arraysets, samples, data descriptors,
schemas, commit message, etc. Though complete, these records are fairly small (tens of MB in size for decently sized repositories with decent history), and are highly compressed for fast transfer between a Hangar client/server.

A brief technical interlude

There is one very important (and rather complex) property which gives Hangar Bookeeping massive power: Existence of some data piece is always known to Hangar and stored immutably once committed. However, the access pattern, backend, and locating information for this data piece may (and over time, will) be unique in every hangar repository instance.

Though the details of how this works is well beyond the scope of this document, the following example may provide some insight into the implications of this property:

If you clone some hangar repository, Bookeeping says that “some number of data pieces exist” and they should retrieved from the server. However, the bookeeping records transfered in a fetch / push / clone operation do not include information about where that piece of data existed on the client (or server) computer. Two synced repositories can use completly different backends to store the data, in completly different locations, and it does not matter - Hangar only guarrentees that when
collaborators ask for a data sample in some checkout, that they will be provided with identical arrays, not that they will come from the same place or be stored in the same way. Only when data is actually retrieved is the “locating information” set for that repository instance. Because Hangar makes no assumptions about how/where it should retrieve some piece of data, or even an assumption that it exists on the local machine, and because records are small and completely describe history, once
a machine has the Bookkeeping, it can decide what data it actually wants to materialize on it’s local disk! These partial fetch / partial clone operations can materialize any desired data, whether it be for a few records at the head branch, for all data in a commit, or for the entire historical data. A future release will even include the ability to stream data directly to a hangar checkout and materialize the data in memory without having to save it to disk at all!

More importantly: Since Bookkeeping describes all history, merging can be performed between branches which may contain partial (or even no) actual data. Aka. You don’t need data on disk to merge changes into it. It’s an odd concept which will be shown in this tutorial

Cloning a Remote Repo

$ hangar clone localhost:50051

[9]:

cloneRepo = Repository('/Users/rick/projects/tensorwerk/hangar/dev/dota-clone/')

When we perform the initial clone, we will only recieve the “master” branch by default.

[10]:

cloneRepo.clone('rick izzo', 'rick@tensorwerk.com', 'localhost:50051', remove_old=True)

fetching commit data refs: 50%|█████ | 1/2 [00:00<00:00, 7.50it/s]

Hangar Repo initialized at: /Users/rick/projects/tensorwerk/hangar/dev/dota-clone/.hangar

fetching commit data refs: 100%|██████████| 2/2 [00:00<00:00, 8.84it/s]
fetching commit spec: 100%|██████████| 2/2 [00:00<00:00, 26.22it/s]

Hard reset requested with writer_lock: 893d3a43-7f95-44e4-9fed-72feb3cf49df

[10]:

'master'

[11]:

cloneRepo.log()

* b119a4db817d9a4120593938ee4115402aa1405f (master) (origin/master) : more changes here
* 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f : initial commit on master with test data

[12]:

cloneRepo.list_branches()

[12]:

['master', 'origin/master']

To get the “add-train” branch, we fetch it from the remote

[13]:

cloneRepo.remote.fetch('origin', 'add-train')

fetching commit data refs: 100%|██████████| 1/1 [00:01<00:00, 1.02s/it]
fetching commit spec: 100%|██████████| 1/1 [00:00<00:00, 3.69it/s]

[13]:

'origin/add-train'

[14]:

cloneRepo.list_branches()

[14]:

['master', 'origin/add-train', 'origin/master']

[15]:

cloneRepo.log(branch='origin/add-train')

* 903fa337a6d1925f82a1700ad76f6c074eec8d7b (origin/add-train) : added training data on another branch
* 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f : initial commit on master with test data

We will create a local branch from the origin/add-train branch, just like in Git

[16]:

cloneRepo.create_branch('add-train', '903fa337a6d1925f82a1700ad76f6c074eec8d7b')

[16]:

'add-train'

[17]:

cloneRepo.list_branches()

[17]:

['add-train', 'master', 'origin/add-train', 'origin/master']

[18]:

cloneRepo.log(branch='add-train')

* 903fa337a6d1925f82a1700ad76f6c074eec8d7b (add-train) (origin/add-train) : added training data on another branch
* 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f : initial commit on master with test data

Checking out a Parial Clone/Fetch

When we fetch/clone, the transfers are very quick, because only the commit records/history were retrieved. The data was not sent, because it may be very large to get the entire data across all of history.

When you check out a commit with partial data, you will be shown a warning indicating that some data is not available locally. An error is raised if you try to access that particular sample data. Otherwise, everything will appear as normal.

[19]:

co = cloneRepo.checkout(branch='master')

 * Checking out BRANCH: master with current HEAD: b119a4db817d9a4120593938ee4115402aa1405f

/Users/rick/projects/tensorwerk/hangar/hangar-py/src/hangar/arrayset.py:115: UserWarning: Arrayset: test contains `reference-only` samples, with actual data residing on a remote server. A `fetch-data` operation is required to access these samples.
 f'operation is required to access these samples.', UserWarning)

[20]:

co

[20]:

Hangar ReaderCheckout
 Writer : False
 Commit Hash : b119a4db817d9a4120593938ee4115402aa1405f
 Num Arraysets : 1
 Num Metadata : 1

we can see from the repr that the arraysets contain partial remote references

[21]:

co.arraysets

[21]:

Hangar Arraysets
 Writeable: False
 Arrayset Names / Partial Remote References:
 - test / True

[22]:

co.arraysets['test']

[22]:

Hangar ArraysetDataReader
 Arrayset Name : test
 Schema Hash : 2bd5a5720bc3
 Variable Shape : False
 (max) Shape : (117,)
 Datatype : <class 'numpy.uint8'>
 Named Samples : False
 Access Mode : r
 Number of Samples : 10294
 Partial Remote Data Refs : True

[23]:

testKey = next(co.arraysets['test'].keys())

[24]:

co.arraysets['test'][testKey]

FileNotFoundError Traceback (most recent call last)
<ipython-input-24-7900b0d54ebc> in <module>
----> 1 co.arraysets['test'][testKey]

~/projects/tensorwerk/hangar/hangar-py/src/hangar/arrayset.py in __getitem__(self, key)
 141 sample array data corresponding to the provided key
 142 """
--> 143 return self.get(key)
 144
 145 def __iter__(self) -> Iterator[Union[str, int]]:

~/projects/tensorwerk/hangar/hangar-py/src/hangar/arrayset.py in get(self, name)
 350 try:
 351 spec = self._sspecs[name]
--> 352 data = self._fs[spec.backend].read_data(spec)
 353 return data
 354 except KeyError:

~/projects/tensorwerk/hangar/hangar-py/src/hangar/backends/remote_50.py in read_data(self, hashVal)
 134 def read_data(self, hashVal: REMOTE_50_DataHashSpec) -> None:
 135 raise FileNotFoundError(
--> 136 f'data hash spec: {REMOTE_50_DataHashSpec} does not exist on this machine. '
 137 f'Perform a `data-fetch` operation to retrieve it from the remote server.')
 138

FileNotFoundError: data hash spec: <class 'hangar.backends.remote_50.REMOTE_50_DataHashSpec'> does not exist on this machine. Perform a `data-fetch` operation to retrieve it from the remote server.

[25]:

co.close()

Fetching Data from a Remote

To retrieve the data, we use the fetch_data operation (accessible via the API or fetch-data via the CLI).

The amount / type of data to retrieve is extremly configurable via the following options

Retrieve the data for some commit which exists in a `partial` state.

 Parameters

 remote : str
 name of the remote to pull the data from
 branch : str, optional
 The name of a branch whose HEAD will be used as the data fetch
 point. If None, ``commit`` argument expected, by default None
 commit : str, optional
 Commit hash to retrieve data for, If None, ``branch`` argument
 expected, by default None
 arrayset_names : Optional[Sequence[str]]
 Names of the arraysets which should be retrieved for the particular
 commits, any arraysets not named will not have their data fetched
 from the server. Default behavior is to retrieve all arraysets
 max_num_bytes : Optional[int]
 If you wish to limit the amount of data sent to the local machine,
 set a `max_num_bytes` parameter. This will retrieve only this
 amount of data from the server to be placed on the local disk.
 Default is to retrieve all data regardless of how large.
 retrieve_all_history : Optional[bool]
 if data should be retrieved for all history accessible by the parents
 of this commit HEAD. by default False

 Returns

 List[str]
 commit hashs of the data which was returned.

This will retrieve all the data on the “master” branch, but not on the “add-train” branch

[26]:

cloneRepo.remote.fetch_data('origin', branch='master')

counting objects: 100%|██████████| 1/1 [00:00<00:00, 39.35it/s]
fetching data: 100%|██████████| 10294/10294 [00:00<00:00, 17452.01it/s]

[26]:

['b119a4db817d9a4120593938ee4115402aa1405f']

[27]:

co = cloneRepo.checkout(branch='master')

 * Checking out BRANCH: master with current HEAD: b119a4db817d9a4120593938ee4115402aa1405f

[28]:

co

[28]:

Hangar ReaderCheckout
 Writer : False
 Commit Hash : b119a4db817d9a4120593938ee4115402aa1405f
 Num Arraysets : 1
 Num Metadata : 1

Unlike before, we see that there is no partial references from the repr

[29]:

co.arraysets

[29]:

Hangar Arraysets
 Writeable: False
 Arrayset Names / Partial Remote References:
 - test / False

[30]:

co.arraysets['test']

[30]:

Hangar ArraysetDataReader
 Arrayset Name : test
 Schema Hash : 2bd5a5720bc3
 Variable Shape : False
 (max) Shape : (117,)
 Datatype : <class 'numpy.uint8'>
 Named Samples : False
 Access Mode : r
 Number of Samples : 10294
 Partial Remote Data Refs : False

When we access the data this time, it is available and retrieved as requested!

[31]:

co['test', testKey]

[31]:

array([255, 223, 8, 2, 0, 255, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 1, 0, 0, 0, 255, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 255, 0, 0,
 0, 0, 0, 0, 0, 255, 0, 0, 0, 0, 1, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 dtype=uint8)

[32]:

co.close()

Working with mixed local/remote checkout Data

If we were to checkout the “add-train” branch now, we would see that there is no arrayset "train" data, but there will be data common to the ancestor that “master” and “add-train” share.

[33]:

cloneRepo.log('add-train')

* 903fa337a6d1925f82a1700ad76f6c074eec8d7b (add-train) (origin/add-train) : added training data on another branch
* 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f : initial commit on master with test data

In this case, the common ancestor is commit: 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f

To show that there is no data on the “add-train” branch

[34]:

co = cloneRepo.checkout(branch='add-train')

 * Checking out BRANCH: add-train with current HEAD: 903fa337a6d1925f82a1700ad76f6c074eec8d7b

/Users/rick/projects/tensorwerk/hangar/hangar-py/src/hangar/arrayset.py:115: UserWarning: Arrayset: train contains `reference-only` samples, with actual data residing on a remote server. A `fetch-data` operation is required to access these samples.
 f'operation is required to access these samples.', UserWarning)

[35]:

co

[35]:

Hangar ReaderCheckout
 Writer : False
 Commit Hash : 903fa337a6d1925f82a1700ad76f6c074eec8d7b
 Num Arraysets : 2
 Num Metadata : 0

[36]:

co.arraysets

[36]:

Hangar Arraysets
 Writeable: False
 Arrayset Names / Partial Remote References:
 - test / False
 - train / True

[37]:

co['test', testKey]

[37]:

array([255, 223, 8, 2, 0, 255, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 1, 0, 0, 0, 255, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 255, 0, 0,
 0, 0, 0, 0, 0, 255, 0, 0, 0, 0, 1, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 dtype=uint8)

[38]:

trainKey = next(co.arraysets['train'].keys())

[39]:

co.arraysets['train'][trainKey]

FileNotFoundError Traceback (most recent call last)
<ipython-input-39-c20187a5b311> in <module>
----> 1 co.arraysets['train'][trainKey]

~/projects/tensorwerk/hangar/hangar-py/src/hangar/arrayset.py in __getitem__(self, key)
 141 sample array data corresponding to the provided key
 142 """
--> 143 return self.get(key)
 144
 145 def __iter__(self) -> Iterator[Union[str, int]]:

~/projects/tensorwerk/hangar/hangar-py/src/hangar/arrayset.py in get(self, name)
 350 try:
 351 spec = self._sspecs[name]
--> 352 data = self._fs[spec.backend].read_data(spec)
 353 return data
 354 except KeyError:

~/projects/tensorwerk/hangar/hangar-py/src/hangar/backends/remote_50.py in read_data(self, hashVal)
 134 def read_data(self, hashVal: REMOTE_50_DataHashSpec) -> None:
 135 raise FileNotFoundError(
--> 136 f'data hash spec: {REMOTE_50_DataHashSpec} does not exist on this machine. '
 137 f'Perform a `data-fetch` operation to retrieve it from the remote server.')
 138

FileNotFoundError: data hash spec: <class 'hangar.backends.remote_50.REMOTE_50_DataHashSpec'> does not exist on this machine. Perform a `data-fetch` operation to retrieve it from the remote server.

[40]:

co.close()

Merging Branches with Parial Data

Even though we don’t have the actual data references in the "add-train" branch, it is still possible to merge the two branches!

This is possible because Hangar doesn’t use the data contents in it’s internal model of checkouts/commits, but instead thinks of a checkouts as a sequence of arraysets/metadata/keys & their associated data hashes (which are very small text records; ie. “bookkeeping”). To show this in action, lets merge the two branches "master" (containing all data locally) and "add-train" (containing parial remote references for the "train" arrayset) together and push it to the Remote!

[41]:

cloneRepo.log('master')

* b119a4db817d9a4120593938ee4115402aa1405f (master) (origin/master) : more changes here
* 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f : initial commit on master with test data

[42]:

cloneRepo.log('add-train')

* 903fa337a6d1925f82a1700ad76f6c074eec8d7b (add-train) (origin/add-train) : added training data on another branch
* 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f : initial commit on master with test data

Perform the Merge

[43]:

cloneRepo.merge('merge commit here', 'master', 'add-train')

Selected 3-Way Merge Strategy

[43]:

'71f3bd864919c6e0c5ef95e2e8fb67102a0f94a2'

IT WORKED!

[44]:

cloneRepo.log()

* 71f3bd864919c6e0c5ef95e2e8fb67102a0f94a2 (master) : merge commit here
|\
* | b119a4db817d9a4120593938ee4115402aa1405f (origin/master) : more changes here
| * 903fa337a6d1925f82a1700ad76f6c074eec8d7b (add-train) (origin/add-train) : added training data on another branch
|/
* 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f : initial commit on master with test data

We can check the summary of the master commit to check that the contents are what we expect (containing both test and train arraysets)

[45]:

cloneRepo.summary()

Summary of Contents Contained in Data Repository

==================
Repository Info
Base Directory: /Users/rick/projects/tensorwerk/hangar/dev/dota-clone
Disk Usage: 45.61 MB

===================
Commit Details
Commit: 71f3bd864919c6e0c5ef95e2e8fb67102a0f94a2
Created: Mon Aug 19 17:41:02 2019
By: rick izzo
Email: rick@tensorwerk.com
Message: merge commit here

==================
DataSets
Number of Named Arraysets: 2
* Arrayset Name: test
Num Arrays: 10294
Details:
- schema_hash: 2bd5a5720bc3
- schema_dtype: 2
- schema_is_var: False
- schema_max_shape: (117,)
- schema_is_named: False
- schema_default_backend: 10
* Arrayset Name: train
Num Arrays: 92650
Details:
- schema_hash: ded1ae23f9af
- schema_dtype: 4
- schema_is_var: False
- schema_max_shape: (117,)
- schema_is_named: False
- schema_default_backend: 10

==================
Metadata:
Number of Keys: 1

Pushing the Merge back to the Remote

To push this merge back to our original copy of the Repository (repo), we just push the "master" branch back to the remote via the API or CLI

[46]:

cloneRepo.remote.push('origin', 'master')

counting objects: 100%|██████████| 1/1 [00:00<00:00, 1.46it/s]
pushing schemas: 0it [00:00, ?it/s]
pushing data: 0it [00:00, ?it/s]
pushing metadata: 0it [00:00, ?it/s]
pushing commit refs: 100%|██████████| 1/1 [00:00<00:00, 3.85it/s]

[46]:

'master'

Looking at our current state of our other instance of the repo "repo" we see that the merge changes aren’t yet propogated to it (since it hasn’t fetched from the remote yet

[47]:

repo.log()

* b119a4db817d9a4120593938ee4115402aa1405f (master) (origin/master) : more changes here
* 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f : initial commit on master with test data

To fetch the merged changes, just fetch the branch as normal. Like all fetches, this will be a fast operation, as it will be a partial fetch operation, not actually transfering the data

[48]:

repo.remote.fetch('origin', 'master')

fetching commit data refs: 100%|██████████| 1/1 [00:00<00:00, 1.24it/s]
fetching commit spec: 100%|██████████| 1/1 [00:00<00:00, 3.62it/s]

[48]:

'origin/master'

[49]:

repo.log('origin/master')

* 71f3bd864919c6e0c5ef95e2e8fb67102a0f94a2 (origin/master) : merge commit here
|\
* | b119a4db817d9a4120593938ee4115402aa1405f (master) : more changes here
| * 903fa337a6d1925f82a1700ad76f6c074eec8d7b (add-train) (origin/add-train) : added training data on another branch
|/
* 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f : initial commit on master with test data

To bring our "master" branch up to date is a simple fast-forward merge

[50]:

repo.merge('ff-merge', 'master', 'origin/master')

Selected Fast-Forward Merge Strategy

[50]:

'71f3bd864919c6e0c5ef95e2e8fb67102a0f94a2'

[51]:

repo.log()

* 71f3bd864919c6e0c5ef95e2e8fb67102a0f94a2 (master) (origin/master) : merge commit here
|\
* | b119a4db817d9a4120593938ee4115402aa1405f : more changes here
| * 903fa337a6d1925f82a1700ad76f6c074eec8d7b (add-train) (origin/add-train) : added training data on another branch
|/
* 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f : initial commit on master with test data

Everything is as it should be! Now, try it out for yourself!

[52]:

repo.summary()

Summary of Contents Contained in Data Repository

==================
Repository Info
Base Directory: /Users/rick/projects/tensorwerk/hangar/dev/intro
Disk Usage: 79.98 MB

===================
Commit Details
Commit: 71f3bd864919c6e0c5ef95e2e8fb67102a0f94a2
Created: Mon Aug 19 17:41:02 2019
By: rick izzo
Email: rick@tensorwerk.com
Message: merge commit here

==================
DataSets
Number of Named Arraysets: 2
* Arrayset Name: test
Num Arrays: 10294
Details:
- schema_hash: 2bd5a5720bc3
- schema_dtype: 2
- schema_is_var: False
- schema_max_shape: (117,)
- schema_is_named: False
- schema_default_backend: 10
* Arrayset Name: train
Num Arrays: 92650
Details:
- schema_hash: ded1ae23f9af
- schema_dtype: 4
- schema_is_var: False
- schema_max_shape: (117,)
- schema_is_named: False
- schema_default_backend: 10

==================
Metadata:
Number of Keys: 1

Dataloaders for Machine Learning (Tensorflow & PyTorch)

This tutorial acts as a step by step guide for fetching, preprocessing, storing and loading the MS-COCO [http://cocodataset.org/#home] dataset for image captioning using deep learning. We have chosen image captioning for this tutorial not by accident. For such an application, the dataset required will have both fixed shape (image) and variably shaped (caption because it’s sequence of natural language) data. This diversity should help the user to get a mental model about how flexible and
easy is to plug hangar to the existing workflow.

You will use the MS-COCO dataset to train our model. The dataset contains over 82,000 images, each of which has at least 5 different caption annotations.

This tutorial assumes you have downloaded and extracted the MS-COCO dataset [http://cocodataset.org/#home] in the current directory. If you haven’t below shell commands should help you do it (beware, it’s about 14 GB data). If you are on Windows, please find the equivalent commands to get the dataset downloaded.

wget http://images.cocodataset.org/zips/train2014.zip
unzip train2014.zip
rm train2014.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip
unzip annotations_trainval2014.zip
rm annotations_trainval2014.zip

Let’s install the required packages in our environment. We will be using tensorflow 1.14 in this tutorial but it should work in all the tensorflow versions starting from 1.12. But do let us know if you face any hiccups. Install below-given packages before continue. Apart from tensorflow and hangar, we use SpaCy [https://spacy.io/] for pre-processing the captions. SpaCy is probably the most wildly used natural language toolkit now.

tensorflow==1.14.0
hangar==3.0
spacy==2.1.8

One more thing before jumping into the tutorial; We need to download the SpaCy English model en_core_web_md which cannot be dynamically loaded. Which means, it must be downloaded with the below command outside this runtime and should reload this runtime.

python -m spacy download en_core_web_md

Once all the dependencies are installed and loaded, we can start building our hangar repository

Hangar Repository creation and arrayset init

We will create a repository and initialize one arrayset named images now for a quick demo of how tensorflow dataloader work. Then we wipe the current repository and create new arraysets for later portions

[]:

repo_path = 'hangar_repo'
username = 'hhsecond'
email = 'sherin@tensorwerk.com'
img_shape = (299, 299, 3)
image_dir = '/content/drive/My Drive/train2014'
annotation_file = ''
import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)

[2]:

import os
from hangar import Repository
import tensorflow as tf
import numpy as np

tf.compat.v1.enable_eager_execution()

if not os.path.isdir(repo_path):
 os.mkdir(repo_path)

repo = Repository(repo_path)
repo.init(user_name=username, user_email=email, remove_old=True)
co = repo.checkout(write=True)

images_aset = co.arraysets.init_arrayset('images', shape=img_shape, dtype=np.uint8, named_samples=False)
co.commit('arrayset init')
co.close()

Hangar Repo initialized at: hangar_repo/.hangar

Add sample images

Here we add few images to the repository and show how we can load this data as tensorflow dataloader. We use the idea we learn here in the later portions to build a fully fledged training loop

[]:

import os
from PIL import Image

co = repo.checkout(write=True)
images_aset = co.arraysets['images']
try:
 for i, file in enumerate(os.listdir(image_dir)):
 pil_img = Image.open(os.path.join(image_dir, file))
 if pil_img.mode == 'L':
 pil_img = pil_img.convert('RGB')
 img = pil_img.resize(img_shape[:-1])
 img = np.array(img)
 images_aset[i] = img
 if i != 0 and i % 2 == 0: # stopping at 2th image
 break
except Exception as e:
 print('Exception', e)
 co.close()
 raise e
co.commit('added image')
co.close()

Let’s make a tensorflow dataloader

Hangar provides make_tf_dataset & make_torch_dataset for creating tensorflow & pytorch datasets from hangar arraysets. You can read more about it in the documentation [https://hangar-py.readthedocs.io/en/latest/api.html#ml-framework-dataloaders]. Next we’ll make a tensorflow dataset and loop over it to make sure we have got a proper tensorflow dataset

[]:

from hangar import make_tf_dataset

[5]:

from matplotlib.pyplot import imshow
co = repo.checkout()
image_aset = co.arraysets['images']
dataset = make_tf_dataset(image_aset)
for image in dataset:
 imshow(image[0].numpy())
 break

 * Checking out BRANCH: master with current HEAD: b769f6d49a7dbb3dcd4f7c6e1c2a32696fd4128f
<class 'hangar.arrayset.ArraysetDataReader'>(repo_pth=hangar_repo/.hangar, aset_name=images, default_schema_hash=b6edf0320f20, isVar=False, varMaxShape=(299, 299, 3), varDtypeNum=2, mode=r)

/usr/local/lib/python3.6/dist-packages/hangar/dataloaders/tfloader.py:88: UserWarning: Dataloaders are experimental in the current release.
 warnings.warn("Dataloaders are experimental in the current release.", UserWarning)

[image: _images/Tutorial-Dataloader_7_2.png]

New arraysets

For our example, we would need two arraysets. One for the image and another one for captions. Let’s wipe our existing repository (remove_old argument in repo.init does this) and create these arraysets

[6]:

repo = Repository(repo_path)
repo.init(user_name=username, user_email=email, remove_old=True)
co = repo.checkout(write=True)

images_aset = co.arraysets.init_arrayset('images', shape=img_shape, dtype=np.uint8, named_samples=False)
captions_aset = co.arraysets.init_arrayset(name='captions', shape=(60,), dtype=np.float, variable_shape=True, named_samples=False)
co.commit('arrayset init')
co.close()

Hangar Repo initialized at: hangar_repo/.hangar

Store image and captions to hangar repo

Each image will be converted to RGB channels with dtype uint8. Each caption will be prepended with START token and append with END token before converting them to floats. We have another preprocessing stage for images later

We’ll start with loading the caption file

[]:

import json
annotation_file = 'annotations/captions_train2014.json'
with open(annotation_file, 'r') as f:
 annotations = json.load(f)

[]:

import spacy
if you have installed spacy and the model in the same notebook session, you might need to restart the runtime to get it into the scope
nlp = spacy.load('en_core_web_md')

[]:

def sent2index(sent):
 """
 Convert sentence to an array of indices using SpaCy
 """
 ids = []
 doc = nlp(sent)
 for token in doc:
 if token.has_vector:
 id = nlp.vocab.vectors.key2row[token.norm]
 else:
 id = sent2index('UNK')[0]
 ids.append(id)
 return ids

Save the data to hangar

[10]:

import os
from tqdm import tqdm

all_captions = []
all_img_name_vector = []
limit = 100 # if you are not planning to save the whole dataset to hangar. Zero means whole dataset

co = repo.checkout(write=True)
images_aset = co.arraysets['images']
captions_aset = co.arraysets['captions']
all_files = set(os.listdir(image_dir))
i = 0
with images_aset, captions_aset:
 for annot in tqdm(annotations['annotations']):
 if limit and i > limit:
 continue
 image_id = annot['image_id']
 assumed_image_paths = 'COCO_train2014_' + '%012d.jpg' % (image_id)
 if assumed_image_paths not in all_files:
 continue
 img_path = os.path.join(image_dir, assumed_image_paths)
 img = Image.open(img_path)
 if img.mode == 'L':
 img = img.convert('RGB')
 img = img.resize(img_shape[:-1])
 img = np.array(img)
 cap = sent2index('sos ' + annot['caption'] + ' eos')
 cap = np.array(cap, dtype=np.float)
 co.arraysets.multi_add({
 images_aset.name: img,
 captions_aset.name: cap
 })
 if i % 1000 == 0 and i != 0:
 if co.diff.status() == 'DIRTY':
 co.commit(f'Added batch {i}')
 i += 1
co.commit('Added full data')
co.close()

100%|██████████| 414113/414113 [00:03<00:00, 122039.19it/s]

Preprocess Images

Our image captioning network requires a pre-processed input. We use transfer learning for this with a pretrained InceptionV3 network which is available in Keras. But we have a problem. Preprocessing is costly and we don’t want to do it all the time. Since Hangar is flexible enough to create multiple arraysets and let you call the group of arrayset as a dataset, it is quite easy to do make a new arrayset for the processed image and we don’t have to do the preprocessing online but keep a
preprocessed image in the new arrayset in the same repository with the same key. Which means, we have three arraysets in our repository (all three has different samples with the same name) - images - captions - processed_images

Although we need only the processed_images for the network, we still keep the bare image in the repository in case we need to look into it later or if we decided to do some other preprocessing instead of InceptionV3 (It is always advised to keep the source truth with you).

[]:

import tensorflow as tf
tf.compat.v1.enable_eager_execution()
image_model = tf.keras.applications.InceptionV3(include_top=False, weights='imagenet')
new_input = image_model.input
hidden_layer = image_model.layers[-1].output
image_features_extract_model = tf.keras.Model(new_input, hidden_layer)

def process_image(img):
 img = tf.keras.applications.inception_v3.preprocess_input(img)
 img = np.expand_dims(img, axis=0)
 img = image_features_extract_model(img)
 return tf.reshape(img, (-1, img.shape[3]))

[]:

from hangar import Repository
import numpy as np

repo_path = 'hangar_repo'

repo = Repository(repo_path)
co = repo.checkout(write=True)
images = co.arraysets['images']
sample_name = list(images.keys())[0]
prototype = process_image(images[sample_name]).numpy()
pimages = co.arraysets.init_arrayset('processed_images', prototype=prototype)

Saving the pre processed image to the new arrayset

[6]:

from tqdm import tqdm

with pimages:
 for key in tqdm(images):
 pimages[key] = process_image(images[key]).numpy()

co.commit('processed image saved')
co.close()

100%|██████████| 101/101 [00:11<00:00, 8.44it/s]

Dataloaders for training

We are using Tensorflow to build the network but how do we load this data from hangar repository to tensorflow. A naive option is to run through the samples and load the numpy arrays and pass that to the sess.run of tensorflow. But that is quite inefficient. Tensorflow uses multiple threads to load the data to memory and its dataloaders can prefetch the data before-hand so that your training loop doesn’t get blocked for loading the data. Also, tensoflow dataloader brings batching, shuffling,
etc to the table prebuilt. That’s cool but how to load data from hangar to tensorflow using TF dataset? Well, we have make_tf_dataset which accepts the list of arraysets as a parameter and returns a TF dataset object

[7]:

from hangar import make_tf_dataset
co = repo.checkout() # we don't need write checkout here

 * Checking out BRANCH: master with current HEAD: 3cbb3fbe7eb0e056ff97e75f41d26303916ef686

[8]:

BATCH_SIZE = 1
EPOCHS = 2
embedding_dim = 256
units = 512
vocab_size = len(nlp.vocab.vectors.key2row)
num_steps = 50

captions_dset = co.arraysets['captions']
pimages_dset = co.arraysets['processed_images']

dataset = make_tf_dataset([pimages_dset, captions_dset], shuffle=True)

<class 'hangar.arrayset.ArraysetDataReader'>(repo_pth=hangar_repo/.hangar, aset_name=processed_images, default_schema_hash=f230548212ab, isVar=False, varMaxShape=(64, 2048), varDtypeNum=11, mode=r)
<class 'hangar.arrayset.ArraysetDataReader'>(repo_pth=hangar_repo/.hangar, aset_name=captions, default_schema_hash=4d60751421d5, isVar=True, varMaxShape=(60,), varDtypeNum=12, mode=r)

/usr/local/lib/python3.6/dist-packages/hangar/dataloaders/tfloader.py:88: UserWarning: Dataloaders are experimental in the current release.
 warnings.warn("Dataloaders are experimental in the current release.", UserWarning)

Padded Batching

Batching needs a bit more explanation here since the dataset does not just consist of fixed shaped data. We have two dataset in which one is for captions. As you know captions are sequence = variably shaped. So instead of using dataset.batch we need to use dataset.padded_batch which takes care of padding the tensors with the longest value in each dimension for each batch. This padded_batch needs the shape by which the user needs the batch to be padded. Unless you need
customization, you can use the shape stored in the dataset object by make_tf_dataset function

[9]:

output_shapes = tf.compat.v1.data.get_output_shapes(dataset)
output_shapes

[9]:

(TensorShape([Dimension(64), Dimension(2048)]), TensorShape([Dimension(None)]))

[]:

dataset = dataset.padded_batch(BATCH_SIZE, padded_shapes=output_shapes)

Build the network

So have the dataloaders ready. Now let’s build the network for image captioning and start training. Rest of this tutorial is a copy of an official tensorflow tutorial which is available at https://tensorflow.org/beta/tutorials/text/image_captioning. The content of tensorflow tutorial page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. Access date: Aug 20 2019

In this example, you extract the features from the lower convolutional layer of InceptionV3 giving us a vector of shape (8, 8, 2048) and quash that to a shape of (64, 2048). We have stored the result of this already to our hangar repo. This vector is then passed through the CNN Encoder (which consists of a single Fully connected layer). The RNN (here GRU) attends over the image to predict the next word.

[]:

class BahdanauAttention(tf.keras.Model):
 def __init__(self, units):
 super(BahdanauAttention, self).__init__()
 self.W1 = tf.keras.layers.Dense(units)
 self.W2 = tf.keras.layers.Dense(units)
 self.V = tf.keras.layers.Dense(1)

 def call(self, features, hidden):
 # features(CNN_encoder output) shape == (batch_size, 64, embedding_dim)
 # hidden shape == (batch_size, hidden_size)
 # hidden_with_time_axis shape == (batch_size, 1, hidden_size)
 hidden_with_time_axis = tf.expand_dims(hidden, 1)
 # score shape == (batch_size, 64, hidden_size)
 score = tf.nn.tanh(self.W1(features) + self.W2(hidden_with_time_axis))
 # attention_weights shape == (batch_size, 64, 1)
 # you get 1 at the last axis because you are applying score to self.V
 attention_weights = tf.nn.softmax(self.V(score), axis=1)
 # context_vector shape after sum == (batch_size, hidden_size)
 context_vector = attention_weights * features
 context_vector = tf.reduce_sum(context_vector, axis=1)

 return context_vector, attention_weights

[]:

class CNN_Encoder(tf.keras.Model):
 # Since you have already extracted the features and dumped it using pickle
 # This encoder passes those features through a Fully connected layer
 def __init__(self, embedding_dim):
 super(CNN_Encoder, self).__init__()
 # shape after fc == (batch_size, 64, embedding_dim)
 self.fc = tf.keras.layers.Dense(embedding_dim)

 def call(self, x):
 x = self.fc(x)
 x = tf.nn.relu(x)
 return x

[]:

class RNN_Decoder(tf.keras.Model):
 def __init__(self, embedding_dim, units, vocab_size):
 super(RNN_Decoder, self).__init__()
 self.units = units
 self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
 self.gru = tf.keras.layers.GRU(self.units,
 return_sequences=True,
 return_state=True,
 recurrent_initializer='glorot_uniform')
 self.fc1 = tf.keras.layers.Dense(self.units)
 self.fc2 = tf.keras.layers.Dense(vocab_size)
 self.attention = BahdanauAttention(self.units)

 def call(self, x, features, hidden):
 # defining attention as a separate model
 context_vector, attention_weights = self.attention(features, hidden)
 # x shape after passing through embedding == (batch_size, 1, embedding_dim)
 x = self.embedding(x)
 # x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)
 x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)
 # passing the concatenated vector to the GRU
 output, state = self.gru(x)
 # shape == (batch_size, max_length, hidden_size)
 x = self.fc1(output)
 # x shape == (batch_size * max_length, hidden_size)
 x = tf.reshape(x, (-1, x.shape[2]))
 # output shape == (batch_size * max_length, vocab)
 x = self.fc2(x)
 return x, state, attention_weights

 def reset_state(self, batch_size):
 return tf.zeros((batch_size, self.units))

[]:

def loss_function(real, pred):
 mask = tf.math.logical_not(tf.math.equal(real, 0))
 loss_ = loss_object(real, pred)
 mask = tf.cast(mask, dtype=loss_.dtype)
 loss_ *= mask
 return tf.reduce_mean(loss_)

[]:

@tf.function
def train_step(img_tensor, target):
 loss = 0
 # initializing the hidden state for each batch
 # because the captions are not related from image to image
 hidden = decoder.reset_state(batch_size=target.shape[0])
 # TODO: do this dynamically: '<start>' == 2
 dec_input = tf.expand_dims([2] * BATCH_SIZE, 1)

 with tf.GradientTape() as tape:
 features = encoder(img_tensor)
 for i in range(1, target.shape[1]):
 # passing the features through the decoder
 predictions, hidden, _ = decoder(dec_input, features, hidden)
 loss += loss_function(target[:, i], predictions)
 # using teacher forcing
 dec_input = tf.expand_dims(target[:, i], 1)
 total_loss = (loss / int(target.shape[1]))
 trainable_variables = encoder.trainable_variables + decoder.trainable_variables

 gradients = tape.gradient(loss, trainable_variables)
 optimizer.apply_gradients(zip(gradients, trainable_variables))
 return loss, total_loss

[]:

encoder = CNN_Encoder(embedding_dim)
decoder = RNN_Decoder(embedding_dim, units, vocab_size)
optimizer = tf.keras.optimizers.Adam()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none')

Training

Here we consume the dataset we have made before by looping over it. The dataset returns the image tensor and target tensor (captions) which we will pass to train_step for training the network

The encoder output, hidden state(initialized to 0) and the decoder input (which is the start token) is passed to the decoder. The decoder returns the predictions and the decoder hidden state. The decoder hidden state is then passed back into the model and the predictions are used to calculate the loss. Use teacher forcing to decide the next input to the decoder. Teacher forcing is the technique where the target word is passed as the next input to the decoder. The final step is to calculate the
gradients and apply it to the optimizer and backpropagate.

[]:

import time

loss_plot = []

for epoch in range(0, EPOCHS):
 start = time.time()
 total_loss = 0
 for (batch, (img_tensor, target)) in enumerate(dataset):
 batch_loss, t_loss = train_step(img_tensor, target)
 total_loss += t_loss
 if batch % 1 == 0:
 print('Epoch {} Batch {} Loss {:.4f}'.format(
 epoch + 1, batch, batch_loss.numpy() / int(target.shape[1])))
 # storing the epoch and loss value to plot later
 loss_plot.append(total_loss / num_steps)

 print('Epoch {} Loss {:.6f}'.format(epoch + 1,
 total_loss / num_steps))
 print('Time taken for 1 epoch {} sec\n'.format(time.time() - start))

Visualize the loss

[23]:

import matplotlib.pyplot as plt
Below loss curve is not the actual loss image we have got
while training and kept it here only as a reference
plt.plot(loss_plot)
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Loss Plot')
plt.show()

[23]:

[image: _images/Tutorial-Dataloader_37_0.png]

[]:

Hangar Under The Hood

At it’s core, hangar is a content addressable data store whose design
requirements were inspired by the Git version control system.

Things In Life Change, Your Data Shouldn’t

When designing a high performance data version control system, achieving
performance goals while ensuring consistency is incredibly difficult. Memory is
fast, disk is slow; not much we can do about it. But since Hangar should
deal with any numeric data in an array of any size (with an enforced limit of
31 dimensions in a sample…) we have to find ways to work with the disk,
not against it.

Upon coming to terms with this face, we are actually presented with a problem
once we realize that we live in the real world, and real world is ugly.
Computers crash, processes get killed, and people do * interesting * things.
Because of this, It is a foundational design principle for us to guarantee
that once Hangar says data has been successfully added to the repository, it is
actually persisted. This essentially means that any process which interacts
with data records on disk must be stateless. If (for example) we were to keep a
record of all data added to the staging area in an in-memory list, and the
process gets killed, we may have just lost references to all of the array data,
and may not even be sure that the arrays were flushed to disk properly. These
situations are a NO-GO from the start, and will always remain so.

So, we come to the first design choice: read and write actions are atomic.
Once data is added to a hangar repository, the numeric array along with the
necessary book-keeping records will always occur transactionally, ensuring
that when something unexpected happens, the data and records are committed to
disk.

Note

The atomicity of interactions is completely hidden from a normal user; they
shouldn’t have to care about this or even know this exists. However, this
is also why using the context-manager style arrayset interaction scheme can
result in ~2x times speedup on writes/reads. We can just pass on most of the
work to the python contextlib package instead of having to begin and
commit/abort (depending on interaction mode) transactions with every call to
an add or get method.

Data Is Large, We Don’t Waste Space

From the very beginning we knew that while it would be easy to just store all
data in every commit as independent arrays on disk, such a naive implementation
would just absolutely eat up disk space for any repository with a non-trivial
history. Hangar commits should be fast and use minimal disk space, duplicating
data just doesn’t make sense for such a system. And so we decided on
implementing a content addressable data store backend.

When a user requests to add data to a hangar repository, one of the first
operations which occur is to generate a hash of the array contents. If the hash
does not match a piece of data already placed in the hangar repository, the
data is sent to the appropriate storage backend methods. On success, the
backend sends back some arbitrary specification which can be used to retrieve
that same piece of data from that particular backend. The record backend then
stores a key/value pair of (hash, backend_specification).

Note

The record backend stores hash information in a separate location from the
commit references (which associate a (arraysetname, sample name/id) to a
sample_hash). This let’s us separate the historical repository
information from a particular computer’s location of a data piece. All we need in
the public history is to know that some data with a particular hash is
associated with a commit. No one but the system which actually needs to access
the data needs to know where it can be found.

On the other hand, if a data sample is added to a repository which already has
a record of some hash, we don’t even involve the storage backend. All we need
to do is just record that a new sample in a arrayset was added with that hash.
It makes no sense to write the same data twice.

This method can actually result in massive space savings for some common use
cases. For the MNIST arrayset, the training label data is typically a 1D-array
of size 50,000. Because there are only 10 labels, we only need to store 10 ints
on disk, and just keep references to the rest.

The Basics of Collaboration: Branching and Merging

Up to this point, we haven’t actually discussed much about how data and records
are treated on disk. We’ll leave an entire walkthrough of the backend record
structure for another tutorial, but let’s introduce the basics here, and see
how we enable the types of branching and merging operations you might be used
to with source code (at largely the same speed!).

Here’s a few core principles to keep in mind:

Numbers == Numbers

Hangar has no concept of what a piece of data is outside of a string of bytes /
numerical array, and most importantly, hangar does not care; Hangar is a
tool, and we leave it up to you to know what your data actually means)!

At the end of the day when the data is placed into some collection on disk,
the storage backend we use won’t care either. In fact, this is the entire
reason why Hangar can do what it can; we don’t attempt to treat data as
anything other then a series of bytes on disk!

The fact that Hangar does not care about what your data represents is a
fundamental underpinning of how the system works under the hood. It is the
designed and intended behavior of Hangar to dump arrays to disk in what would
seem like completely arbitrary buffers/locations to an outside observer. And
for the most part, they would be essentially correct in their observation that
data samples on disk are in strange locations.

While there is almost no organization or hierarchy for the actual data samples
when they are stored on disk, that is not to say that they are stored without
care! We may not care about global trends, but we do care a great deal about
the byte order/layout, sequentiality, chunking/compression and validations
operations which are applied across the bytes which make up a data sample.

In other words, we optimize for utility and performance on the backend, not so
that a human can understand the file format without a computer! After the array
has been saved to disk, all we care about is that bookkeeper can record some
unique information about where some piece of content is, and how we can read
it. None of that information is stored alongside the data itself - Remember:
numbers are just numbers - they don’t have any concept of what they are.

Records != Numbers

The form numerical data takes once dumped on disk is completely irrelevant to
the specifications of records in the repository history.

Now, let’s unpack this for a bit. We know from`Numbers == Numbers`_ that data
is saved to disk in some arbitrary locations with some arbitrary backend. We
also know from Data Is Large, We Don’t Waste Space that the permanent
repository information only contains a record which links a sample name to a
hash. We also assert that there is also a mapping of hash to storage backend
specification kept somewhere (doesn’t matter what that mapping is for the
moment). With those 3 pieces of information, it’s obvious that once data is
placed in the repository, we don’t actually need to interact with it to
understand the accounting of what was added when!

In order to make a commit, we just pack up all the records which existed in the
staging area, create a hash of the records (including the hash of any parent
commits), and then store the commit hash mapping alongside details such as the
commit user/email and commit message, and a compressed version of the full
commit records as they existed at that point in time.

Note

That last point “storing a compressed version of the full commit records”, is
semi inefficient, and will be changed in the future so that unchanged records
are note duplicated across commits.

An example is given below of the keys -> values mapping which stores each of
the staged records, and which are packed up / compressed on commit (and
subsequently unpacked on checkout!).

Num asets 'a.' -> '2'

Name of aset -> num samples || 'a.train_images' -> '10'
Name of data -> hash || 'a.train_images.0' -> BAR_HASH_1'
Name of data -> hash || 'a.train_images.1' -> BAR_HASH_2'
Name of data -> hash || 'a.train_images.2' -> BAR_HASH_3'
Name of data -> hash || 'a.train_images.3' -> BAR_HASH_4'
Name of data -> hash || 'a.train_images.4' -> BAR_HASH_5'
Name of data -> hash || 'a.train_images.5' -> BAR_HASH_6'
Name of data -> hash || 'a.train_images.6' -> BAR_HASH_7'
Name of data -> hash || 'a.train_images.7' -> BAR_HASH_8'
Name of data -> hash || 'a.train_images.8' -> BAR_HASH_9'
Name of data -> hash || 'a.train_images.9' -> BAR_HASH_0'

Name of aset -> num samples || 'a.train_labels' -> '10'
Name of data -> hash || 'a.train_labels.0' -> BAR_HASH_11'
Name of data -> hash || 'a.train_labels.1' -> BAR_HASH_12'
Name of data -> hash || 'a.train_labels.2' -> BAR_HASH_13'
Name of data -> hash || 'a.train_labels.3' -> BAR_HASH_14'
Name of data -> hash || 'a.train_labels.4' -> BAR_HASH_15'
Name of data -> hash || 'a.train_labels.5' -> BAR_HASH_16'
Name of data -> hash || 'a.train_labels.6' -> BAR_HASH_17'
Name of data -> hash || 'a.train_labels.7' -> BAR_HASH_18'
Name of data -> hash || 'a.train_labels.8' -> BAR_HASH_19'
Name of data -> hash || 'a.train_labels.9' -> BAR_HASH_10'

's.train_images' -> '{"schema_hash": "RM4DefFsjRs=",
 "schema_dtype": 2,
 "schema_is_var": false,
 "schema_max_shape": [784],
 "schema_is_named": true}'
's.train_labels' -> '{"schema_hash":
 "ncbHqE6Xldg=",
 "schema_dtype": 7,
 "schema_is_var": false,
 "schema_max_shape": [1],
 "schema_is_named": true}'

History is Relative

Though it may be a bit obvious to state, it is of critical importance to
realize that it is only because we store the full contents of the repository
staging area as it existed in the instant just prior to a commit, that the
integrity of full repository history can be verified from a single commit’s
contents and expected hash value. More so, any single commit has only a topical
relationship to a commit at any other point in time. It is only our imposition
of a commit’s ancestry tree which actualizes any subsequent insights or
interactivity

While the general process of topological ordering: create branch, checkout
branch, commit a few times, and merge, follows the git model fairly well at a
conceptual level, there are some important
differences we want to highlight due to their implementation differences:

	Multiple commits can simultaneously checked out in “read-only” mode on a
single machine. Checking out a commit for reading does not touch the staging
area status.

	Only one process can interact with the a write-enabled checkout at a time.

	A detached head CANNOT exist for write enabled checkouts. A staging area must
begin with an identical state to the most recent commit of a/any branch.

	A staging area which has had changes made in it cannot switch base branch
without either a commit, hard-reset, or (soon to be developed) stash
operation.

When a repository is initialized, a record is created which indicates the
staging area’s HEAD branch. in addition, a branch is created with the name
master, and which is the only commit in the entire repository which will have
no parent. The record key/value pairs resemble the following:

'branch.master' -> '' # No parent commit.
'head' -> 'branch.master' # Staging area head branch

Commit Hash | Parent Commit

Warning

Much like git, odd things can happen before the ‘initial commit’ is made. We
recommend creating the initial commit as quickly as possible to prevent
undefined behavior during repository setup. In the future, we may decide to
create the “initial commit” automatically upon repository initialization.

Once the initial commit is made, a permanent commit record in made which
specifies the records (not shown below) and the parent commit. The branch head
pointer is then updated to point to that commit as it’s base.

'branch.master' -> '479b4cfff6219e3d'
'head' -> 'branch.master'

Commit Hash | Parent Commit

'479b4cfff6219e3d' -> ''

Branches can be created as cheaply a single line of text can be written, and
they simply require a “root” commit hash (or a branch name, in which case the
branch’s current HEAD commit will be used as the root HEAD). Likewise a branch
can be merged with just a single write operation (once the merge logic has
completed - a process which is explained separately from this section; just
trust that it happens for now).

A more complex example which creates 4 different branches and merges them in a
complicated order can be seen below. Please note that the `` << `` symbol is
used to indicate a merge commit where X << Y reads: 'merging dev branch Y
into master branch X'.

'branch.large_branch' -> '8eabd22a51c5818c'
'branch.master' -> '2cd30b98d34f28f0'
'branch.test_branch' -> '1241a36e89201f88'
'branch.trydelete' -> '51bec9f355627596'
'head' -> 'branch.master'

 # Commit Hash | Parent Commit

'1241a36e89201f88' -> '8a6004f205fd7169'
'2cd30b98d34f28f0' -> '9ec29571d67fa95f << 51bec9f355627596'
'51bec9f355627596' -> 'd683cbeded0c8a89'
'69a09d87ea946f43' -> 'd683cbeded0c8a89'
'8a6004f205fd7169' -> 'a320ae935fc3b91b'
'8eabd22a51c5818c' -> 'c1d596ed78f95f8f'
'9ec29571d67fa95f' -> '69a09d87ea946f43 << 8eabd22a51c5818c'
'a320ae935fc3b91b' -> 'e3e79dd897c3b120'
'c1d596ed78f95f8f' -> ''
'd683cbeded0c8a89' -> 'fe0bcc6a427d5950 << 1241a36e89201f88'
'e3e79dd897c3b120' -> 'c1d596ed78f95f8f'
'fe0bcc6a427d5950' -> 'e3e79dd897c3b120'

Because the raw commit hash logs can be quite dense to parse, a graphical
logging utility is included as part of the repository. Running the
Repository.log() method will pretty print a graph representation of the
commit history:

>>> from hangar import Repository
>>> repo = Repository(path='/foo/bar/path/')

... # make some commits

>>> repo.log()

[image: _images/repo_graph_log.png]

Python API

This is the python API for the Hangar project.

Repository

	
class Repository(path: os.PathLike, exists: bool = True)

	Launching point for all user operations in a Hangar repository.

All interaction, including the ability to initialize a repo, checkout a
commit (for either reading or writing), create a branch, merge branches, or
generally view the contents or state of the local repository starts here.
Just provide this class instance with a path to an existing Hangar
repository, or to a directory one should be initialized, and all required
data for starting your work on the repo will automatically be populated.

>>> from hangar import Repository
>>> repo = Repository('foo/path/to/dir')

	Parameters

	
	path (str) – local directory path where the Hangar repository exists (or initialized)

	exists (bool, optional) – True if a Hangar repository should exist at the given directory path.
Should no Hangar repository exists at that location, a UserWarning will
be raised indicating that the init() method needs to be called.

False if the provided path does not need to (but optionally can) contain a
Hangar repository. if a Hangar repository does not exist at that path, the
usual UserWarning will be suppressed.

In both cases, the path must exist and the user must have sufficient OS
permissions to write to that location. Default = True

	
checkout(write: bool = False, *, branch: str = 'master', commit: str = '') → Union[hangar.checkout.ReaderCheckout, hangar.checkout.WriterCheckout]

	Checkout the repo at some point in time in either read or write mode.

Only one writer instance can exist at a time. Write enabled checkout
must must create a staging area from the HEAD commit of a branch. On
the contrary, any number of reader checkouts can exist at the same time
and can specify either a branch name or a commit hash.

	Parameters

	
	write (bool, optional) – Specify if the checkout is write capable, defaults to False

	branch (str, optional) – name of the branch to checkout. This utilizes the state of the repo
as it existed at the branch HEAD commit when this checkout object
was instantiated, defaults to ‘master’

	commit (str, optional) – specific hash of a commit to use for the checkout (instead of a
branch HEAD commit). This argument takes precedent over a branch
name parameter if it is set. Note: this only will be used in
non-writeable checkouts, defaults to ‘’

	Raises

	ValueError – If the value of write argument is not boolean

	Returns

	Checkout object which can be used to interact with the repository
data

	Return type

	Union[ReaderCheckout, WriterCheckout]

	
clone(user_name: str, user_email: str, remote_address: str, *, remove_old: bool = False) → str

	Download a remote repository to the local disk.

The clone method implemented here is very similar to a git clone
operation. This method will pull all commit records, history, and data
which are parents of the remote’s master branch head commit. If a
Repository exists at the specified directory,
the operation will fail.

	Parameters

	
	user_name (str) – Name of the person who will make commits to the repository. This
information is recorded permanently in the commit records.

	user_email (str) – Email address of the repository user. This information is recorded
permanently in any commits created.

	remote_address (str) – location where the
hangar.remote.server.HangarServer process is
running and accessible by the clone user.

	remove_old (bool, optional, kwarg only) – DANGER! DEVELOPMENT USE ONLY! If enabled, a
hangar.repository.Repository existing on disk at the same
path as the requested clone location will be completely removed and
replaced with the newly cloned repo. (the default is False, which
will not modify any contents on disk and which will refuse to create
a repository at a given location if one already exists there.)

	Returns

	Name of the master branch for the newly cloned repository.

	Return type

	str

	
create_branch(name: str, base_commit: str = None) → str

	create a branch with the provided name from a certain commit.

If no base commit hash is specified, the current writer branch HEAD
commit is used as the base_commit hash for the branch. Note that
creating a branch does not actually create a checkout object for
interaction with the data. to interact you must use the repository
checkout method to properly initialize a read (or write) enabled
checkout object.

	Parameters

	
	name (str) – name to assign to the new branch

	base_commit (str, optional) – commit hash to start the branch root at. if not specified, the
writer branch HEAD commit at the time of execution will be used,
defaults to None

	Returns

	name of the branch which was created

	Return type

	str

	
force_release_writer_lock() → bool

	Force release the lock left behind by an unclosed writer-checkout

Warning

NEVER USE THIS METHOD IF WRITER PROCESS IS CURRENTLY ACTIVE. At the time
of writing, the implications of improper/malicious use of this are not
understood, and there is a a risk of of undefined behavior or (potentially)
data corruption.

At the moment, the responsibility to close a write-enabled checkout is
placed entirely on the user. If the close() method is not called
before the program terminates, a new checkout with write=True will fail.
The lock can only be released via a call to this method.

Note

This entire mechanism is subject to review/replacement in the future.

	Returns

	if the operation was successful.

	Return type

	bool

	
init(user_name: str, user_email: str, *, remove_old: bool = False) → os.PathLike

	Initialize a Hangar repository at the specified directory path.

This function must be called before a checkout can be performed.

	Parameters

	
	user_name (str) – Name of the repository user account.

	user_email (str) – Email address of the repository user account.

	remove_old (bool, kwarg-only) – DEVELOPER USE ONLY – remove and reinitialize a Hangar
repository at the given path, Default = False

	Returns

	the full directory path where the Hangar repository was
initialized on disk.

	Return type

	os.PathLike

	
initialized

	Check if the repository has been initialized or not

	Returns

	True if repository has been initialized.

	Return type

	bool

	
list_branches() → List[str]

	list all branch names created in the repository.

	Returns

	the branch names recorded in the repository

	Return type

	list of str

	
log(branch: str = None, commit: str = None, *, return_contents: bool = False, show_time: bool = False, show_user: bool = False) → Optional[dict]

	Displays a pretty printed commit log graph to the terminal.

Note

For programatic access, the return_contents value can be set to true
which will retrieve relevant commit specifications as dictionary
elements.

	Parameters

	
	branch (str, optional) – The name of the branch to start the log process from. (Default value
= None)

	commit (str, optional) – The commit hash to start the log process from. (Default value = None)

	return_contents (bool, optional, kwarg only) – If true, return the commit graph specifications in a dictionary
suitable for programatic access/evaluation.

	show_time (bool, optional, kwarg only) – If true and return_contents is False, show the time of each commit
on the printed log graph

	show_user (bool, optional, kwarg only) – If true and return_contents is False, show the committer of each
commit on the printed log graph

	Returns

	Dict containing the commit ancestor graph, and all specifications.

	Return type

	Optional[dict]

	
merge(message: str, master_branch: str, dev_branch: str) → str

	Perform a merge of the changes made on two branches.

	Parameters

	
	message (str) – Commit message to use for this merge.

	master_branch (str) – name of the master branch to merge into

	dev_branch (str) – name of the dev/feature branch to merge

	Returns

	Hash of the commit which is written if possible.

	Return type

	str

	
path

	Return the path to the repository on disk, read-only attribute

	Returns

	path to the specified repository, not including .hangar directory

	Return type

	os.PathLike

	
remote

	Accessor to the methods controlling remote interactions.

See also

Remotes for available methods of this property

	Returns

	Accessor object methods for controlling remote interactions.

	Return type

	Remotes

	
remove_branch(name)

	Not Implemented

	
summary(*, branch: str = '', commit: str = '') → None

	Print a summary of the repository contents to the terminal

	Parameters

	
	branch (str, optional) – A specific branch name whose head commit will be used as the summary
point (Default value = ‘’)

	commit (str, optional) – A specific commit hash which should be used as the summary point.
(Default value = ‘’)

	
version

	Find the version of Hangar software the repository is written with

	Returns

	semantic version of major, minor, micro version of repo software version.

	Return type

	str

	
writer_lock_held

	Check if the writer lock is currently marked as held. Read-only attribute.

	Returns

	True is writer-lock is held, False if writer-lock is free.

	Return type

	bool

	
class Remotes

	Class which governs access to remote interactor objects.

Note

The remote-server implementation is under heavy development, and
is likely to undergo changes in the Future. While we intend to
ensure compatability between software versions of Hangar repositories
written to disk, the API is likely to change. Please follow our
process at: https://www.github.com/tensorwerk/hangar-py

	
add(name: str, address: str) → hangar.remotes.RemoteInfo

	Add a remote to the repository accessible by name at address.

	Parameters

	
	name (str) – the name which should be used to refer to the remote server (ie:
‘origin’)

	address (str) – the IP:PORT where the hangar server is running

	Returns

	Two-tuple containing (name, address) of the remote added to
the client’s server list.

	Return type

	RemoteInfo

	Raises

	ValueError – If a remote with the provided name is already listed on this client,
No-Op. In order to update a remote server address, it must be
removed and then re-added with the desired address.

	
fetch(remote: str, branch: str) → str

	Retrieve new commits made on a remote repository branch.

This is semantically identical to a git fetch command. Any new commits
along the branch will be retrieved, but placed on an isolated branch to
the local copy (ie. remote_name/branch_name). In order to unify
histories, simply merge the remote branch into the local branch.

	Parameters

	
	remote (str) – name of the remote repository to fetch from (ie. origin)

	branch (str) – name of the branch to fetch the commit references for.

	Returns

	Name of the branch which stores the retrieved commits.

	Return type

	str

	
fetch_data(remote: str, branch: str = None, commit: str = None, *, arrayset_names: Optional[Sequence[str]] = None, max_num_bytes: int = None, retrieve_all_history: bool = False) → List[str]

	Retrieve the data for some commit which exists in a partial state.

	Parameters

	
	remote (str) – name of the remote to pull the data from

	branch (str, optional) – The name of a branch whose HEAD will be used as the data fetch
point. If None, commit argument expected, by default None

	commit (str, optional) – Commit hash to retrieve data for, If None, branch argument
expected, by default None

	arrayset_names (Optional[Sequence[str]]) – Names of the arraysets which should be retrieved for the particular
commits, any arraysets not named will not have their data fetched
from the server. Default behavior is to retrieve all arraysets

	max_num_bytes (Optional[int]) – If you wish to limit the amount of data sent to the local machine,
set a max_num_bytes parameter. This will retrieve only this
amount of data from the server to be placed on the local disk.
Default is to retrieve all data regardless of how large.

	retrieve_all_history (Optional[bool]) – if data should be retrieved for all history accessible by the parents
of this commit HEAD. by default False

	Returns

	commit hashs of the data which was returned.

	Return type

	List[str]

	Raises

	
	ValueError – if branch and commit args are set simultaneously.

	ValueError – if specified commit does not exist in the repository.

	ValueError – if branch name does not exist in the repository.

	
list_all() → List[hangar.remotes.RemoteInfo]

	List all remote names and addresses recorded in the client’s repository.

	Returns

	list of namedtuple specifying (name, address) for each
remote server recorded in the client repo.

	Return type

	List[RemoteInfo]

	
ping(name: str) → float

	Ping remote server and check the round trip time.

	Parameters

	name (str) – name of the remote server to ping

	Returns

	round trip time it took to ping the server after the connection was
established and requested client configuration was retrieved

	Return type

	float

	Raises

	
	KeyError – If no remote with the provided name is recorded.

	ConnectionError – If the remote server could not be reached.

	
push(remote: str, branch: str, *, username: str = '', password: str = '') → bool

	push changes made on a local repository to a remote repository.

This method is semantically identical to a git push operation.
Any local updates will be sent to the remote repository.

Note

The current implementation is not capable of performing a
force push operation. As such, remote branches with diverged
histories to the local repo must be retrieved, locally merged,
then re-pushed. This feature will be added in the near future.

	Parameters

	
	remote (str) – name of the remote repository to make the push on.

	branch (str) – Name of the branch to push to the remote. If the branch name does
not exist on the remote, the it will be created

	username (str, optional, kwarg-only) – credentials to use for authentication if repository push restrictions
are enabled, by default ‘’.

	password (str, optional, kwarg-only) – credentials to use for authentication if repository push restrictions
are enabled, by default ‘’.

	Returns

	Name of the branch which was pushed

	Return type

	str

	
remove(name: str) → hangar.remotes.RemoteInfo

	Remove a remote repository from the branch records

	Parameters

	name (str) – name of the remote to remove the reference to

	Raises

	ValueError – If a remote with the provided name does not exist

	Returns

	The channel address which was removed at the given remote name

	Return type

	str

Write Enabled Checkout

	
class WriterCheckout

	Checkout the repository at the head of a given branch for writing.

This is the entry point for all writing operations to the repository, the
writer class records all interactions in a special "staging" area,
which is based off the state of the repository as it existed at the
HEAD commit of a branch.

>>> co = repo.checkout(write=True)
>>> co.branch_name
'master'
>>> co.commit_hash
'masterheadcommithash'
>>> co.close()

At the moment, only one instance of this class can write data to the
staging area at a time. After the desired operations have been completed,
it is crucial to call close() to release the writer lock. In
addition, after any changes have been made to the staging area, the branch
HEAD cannot be changed. In order to checkout another branch HEAD
for writing, you must either commit() the changes, or perform a
hard-reset of the staging area to the last commit via
reset_staging_area().

In order to reduce the chance that the python interpreter is shut down
without calling close(), which releases the writer lock - a common
mistake during ipython / jupyter sessions - an atexit [https://docs.python.org/3/library/atexit.html] hook is registered to
close(). If properly closed by the user, the hook is unregistered
after completion with no ill effects. So long as a the process is NOT
terminated via non-python SIGKILL, fatal internal python error, or or
special os exit methods, cleanup will occur on interpreter shutdown and the
writer lock will be released. If a non-handled termination method does
occur, the force_release_writer_lock() method must be
called manually when a new python process wishes to open the writer
checkout.

	
__getitem__(index)

	Dictionary style access to arraysets and samples

Checkout object can be thought of as a “dataset” (“dset”) mapping a
view of samples across arraysets.

>>> dset = repo.checkout(branch='master')

Get an arrayset contained in the checkout.

>>> dset['foo']
ArraysetDataReader

Get a specific sample from 'foo' (returns a single array)

>>> dset['foo', '1']
np.array([1])

Get multiple samples from 'foo' (retuns a list of arrays, in order
of input keys)

>>> dset['foo', ['1', '2', '324']]
[np.array([1]), np.ndarray([2]), np.ndarray([324])]

Get sample from multiple arraysets (returns namedtuple of arrays, field
names = arrayset names)

>>> dset[('foo', 'bar', 'baz'), '1']
ArraysetData(foo=array([1]), bar=array([11]), baz=array([111]))

Get multiple samples from multiple arraysets(returns list of namedtuple
of array sorted in input key order, field names = arrayset names)

>>> dset[('foo', 'bar'), ('1', '2')]
[ArraysetData(foo=array([1]), bar=array([11])),
 ArraysetData(foo=array([2]), bar=array([22]))]

Get samples from all arraysets (shortcut syntax)

>>> out = dset[:, ('1', '2')]
>>> out = dset[..., ('1', '2')]
>>> out
[ArraysetData(foo=array([1]), bar=array([11]), baz=array([111])),
 ArraysetData(foo=array([2]), bar=array([22]), baz=array([222]))]

>>> out = dset[:, '1']
>>> out = dset[..., '1']
>>> out
ArraysetData(foo=array([1]), bar=array([11]), baz=array([111]))

	Parameters

	index – Please see detailed explanation above for full options.

The first element (or collection) specified must be str type and
correspond to an arrayset name(s). Alternativly the Ellipsis operator
(...) or unbounded slice operator (: <==> slice(None)) can
be used to indicate “select all” behavior.

If a second element (or collection) is present, the keys correspond to
sample names present within (all) the specified arraysets. If a key is
not present in even on arrayset, the entire get operation will
abort with KeyError. If desired, the same selection syntax can be
used with the get() method, which
will not Error in these situations, but simply return None values
in the appropriate position for keys which do not exist.

	Returns

	
	Arrayset – single arrayset parameter, no samples specified

	np.ndarray – Single arrayset specified, single sample key specified

	List[np.ndarray] – Single arrayset, multiple samples array data for each sample is
returned in same order sample keys are recieved.

	List[NamedTuple[*np.ndarray]] – Multiple arraysets, multiple samples. Each arrayset’s name is used
as a field in the NamedTuple elements, each NamedTuple contains
arrays stored in each arrayset via a common sample key. Each sample
key is returned values as an individual element in the
List. The sample order is returned in the same order it wasw recieved.

Notes

	All specified arraysets must exist

	All specified sample keys must exist in all specified arraysets,
otherwise standard exception thrown

	Slice syntax cannot be used in sample keys field

	Slice syntax for arrayset field cannot specify start, stop, or
step fields, it is soley a shortcut syntax for ‘get all arraysets’ in
the : or slice(None) form

	
__setitem__(index, value)

	Syntax for setting items.

Checkout object can be thought of as a “dataset” (“dset”) mapping a view
of samples across arraysets:

>>> dset = repo.checkout(branch='master', write=True)

Add single sample to single arrayset

>>> dset['foo', 1] = np.array([1])
>>> dset['foo', 1]
array([1])

Add multiple samples to single arrayset

>>> dset['foo', [1, 2, 3]] = [np.array([1]), np.array([2]), np.array([3])]
>>> dset['foo', [1, 2, 3]]
[array([1]), array([2]), array([3])]

Add single sample to multiple arraysets

>>> dset[['foo', 'bar'], 1] = [np.array([1]), np.array([11])]
>>> dset[:, 1]
ArraysetData(foo=array([1]), bar=array([11]))

	Parameters

	
	index (Union[Iterable[str], Iterable[str, int]]) – Please see detailed explanation above for full options.The first
element (or collection) specified must be str type and correspond
to an arrayset name(s). The second element (or collection) are keys
corresponding to sample names which the data should be written to.

Unlike the __getitem__() method, only ONE of the arrayset
name(s) or sample key(s) can specify multiple elements at the same
time. Ie. If multiple arraysets are specified, only one sample key
can be set, likewise if multiple samples are specified, only one
arrayset can be specified. When specifying multiple arraysets
or samples, each data piece to be stored must reside as individual
elements (np.ndarray) in a List or Tuple. The number of keys and
the number of values must match exactally.

	values (Union[np.ndarray, Iterable[np.ndarray]]) – Data to store in the specified arraysets/sample keys. When
specifying multiple arraysets or samples, each data piece
to be stored must reside as individual elements (np.ndarray) in
a List or Tuple. The number of keys and the number of values must
match exactally.

Notes

	No slicing syntax is supported for either arraysets or samples. This
is in order to ensure explicit setting of values in the desired
fields/keys

	Add multiple samples to multiple arraysets not yet supported.

	
arraysets

	Provides access to arrayset interaction object.

Can be used to either return the arraysets accessor for all elements or
a single arrayset instance by using dictionary style indexing.

>>> co = repo.checkout(write=True)
>>> asets = co.arraysets
>>> len(asets)
0
>>> fooAset = asets.init_arrayset('foo', shape=(10, 10), dtype=np.uint8)
>>> len(co.arraysets)
1
>>> print(co.arraysets.keys())
['foo']
>>> fooAset = co.arraysets['foo']
>>> fooAset.dtype
np.fooDtype
>>> fooAset = asets.get('foo')
>>> fooAset.dtype
np.fooDtype

See also

The class Arraysets contains all methods accessible
by this property accessor

	Returns

	weakref proxy to the arraysets object which behaves exactly like a
arraysets accessor class but which can be invalidated when the writer
lock is released.

	Return type

	Arraysets

	
branch_name

	Branch this write enabled checkout’s staging area was based on.

	Returns

	name of the branch whose commit HEAD changes are staged from.

	Return type

	str

	
close() → None

	Close all handles to the writer checkout and release the writer lock.

Failure to call this method after the writer checkout has been used will
result in a lock being placed on the repository which will not allow any
writes until it has been manually cleared.

	
commit(commit_message: str) → str

	Commit the changes made in the staging area on the checkout branch.

	Parameters

	commit_message (str, optional) – user proved message for a log of what was changed in this commit.
Should a fast forward commit be possible, this will NOT be added to
fast-forward HEAD.

	Returns

	The commit hash of the new commit.

	Return type

	string

	Raises

	RuntimeError – If no changes have been made in the staging area, no commit occurs.

	
commit_hash

	Commit hash which the staging area of branch_name is based on.

	Returns

	commit hash

	Return type

	string

	
diff

	Access the differ methods which are aware of any staged changes.

See also

The class hangar.diff.WriterUserDiff contains all methods
accessible by this property accessor

	Returns

	weakref proxy to the differ object (and contained methods) which behaves
exactly like the differ class but which can be invalidated when the
writer lock is released.

	Return type

	WriterUserDiff

	
get(arraysets, samples, *, except_missing=False)

	View of samples across arraysets which handles missing sample keys.

Please see __getitem__() for full description. This method is
identical with a single exception: if a sample key is not present in an
arrayset, this method will plane a null None value in it’s return
slot rather than throwing a KeyError like the dict style access
does.

	Parameters

	
	arraysets (Union[str, Iterable[str], Ellipses, slice(None)]) – Name(s) of the arraysets to query. The Ellipsis operator (...)
or unbounded slice operator (: <==> slice(None)) can be
used to indicate “select all” behavior.

	samples (Union[str, int, Iterable[Union[str, int]]]) – Names(s) of the samples to query

	except_missing (bool, **KWARG ONLY) – If False, will not throw exceptions on missing sample key value.
Will raise KeyError if True and missing key found.

	Returns

	
	Arrayset – single arrayset parameter, no samples specified

	np.ndarray – Single arrayset specified, single sample key specified

	List[np.ndarray] – Single arrayset, multiple samples array data for each sample is
returned in same order sample keys are recieved.

	List[NamedTuple[*np.ndarray]] – Multiple arraysets, multiple samples. Each arrayset’s name is used
as a field in the NamedTuple elements, each NamedTuple contains
arrays stored in each arrayset via a common sample key. Each sample
key is returned values as an individual element in the
List. The sample order is returned in the same order it wasw recieved.

	
merge(message: str, dev_branch: str) → str

	Merge the currently checked out commit with the provided branch name.

If a fast-forward merge is possible, it will be performed, and the
commit message argument to this function will be ignored.

	Parameters

	
	message (str) – commit message to attach to a three-way merge

	dev_branch (str) – name of the branch which should be merge into this branch (master)

	Returns

	commit hash of the new commit for the master branch this checkout
was started from.

	Return type

	str

	
metadata

	Provides access to metadata interaction object.

See also

The class hangar.metadata.MetadataWriter contains all methods
accessible by this property accessor

	Returns

	weakref proxy to the metadata object which behaves exactly like a
metadata class but which can be invalidated when the writer lock is
released.

	Return type

	MetadataWriter

	
reset_staging_area() → str

	Perform a hard reset of the staging area to the last commit head.

After this operation completes, the writer checkout will automatically
close in the typical fashion (any held references to :attr:arrayset
or :attr:metadata objects will finalize and destruct as normal), In
order to perform any further operation, a new checkout needs to be
opened.

Warning

This operation is IRREVERSIBLE. all records and data which are note
stored in a previous commit will be permanently deleted.

	Returns

	Commit hash of the head which the staging area is reset to.

	Return type

	str

	Raises

	RuntimeError – If no changes have been made to the staging area, No-Op.

Arraysets

	
class Arraysets

	Common access patterns and initialization/removal of arraysets in a checkout.

This object is the entry point to all tensor data stored in their individual
arraysets. Each arrayset contains a common schema which dictates the general
shape, dtype, and access patters which the backends optimize access for. The
methods contained within allow us to create, remove, query, and access these
collections of common tensors.

	
__contains__(key: str) → bool

	Determine if a arrayset with a particular name is stored in the checkout

	Parameters

	key (str) – name of the arrayset to check for

	Returns

	True if a arrayset with the provided name exists in the checkout,
otherwise False.

	Return type

	bool

	
__delitem__(key: str) → str

	remove a arrayset and all data records if write-enabled process.

	Parameters

	key (str) – Name of the arrayset to remove from the repository. This will remove
all records from the staging area (though the actual data and all
records are still accessible) if they were previously committed

	Returns

	If successful, the name of the removed arrayset.

	Return type

	str

	Raises

	PermissionError – If this is a read-only checkout, no operation is permitted.

	
__getitem__(key: str) → Union[hangar.arrayset.ArraysetDataReader, hangar.arrayset.ArraysetDataWriter]

	Dict style access to return the arrayset object with specified key/name.

	Parameters

	key (string) – name of the arrayset object to get.

	Returns

	The object which is returned depends on the mode of checkout specified.
If the arrayset was checked out with write-enabled, return writer object,
otherwise return read only object.

	Return type

	ArraysetDataReader or ArraysetDataWriter

	
__setitem__(key, value)

	Specifically prevent use dict style setting for arrayset objects.

Arraysets must be created using the factory function init_arrayset().

	Raises

	PermissionError – This operation is not allowed under any circumstance

	
contains_remote_references

	Dict of bool indicating data reference locality in each arrayset.

	Returns

	For each arrayset name key, boolean value where False indicates all
samples in arrayset exist locally, True if some reference remote
sources.

	Return type

	Mapping[str, bool]

	
get(name: str) → Union[hangar.arrayset.ArraysetDataReader, hangar.arrayset.ArraysetDataWriter]

	Returns a arrayset access object.

This can be used in lieu of the dictionary style access.

	Parameters

	name (str) – name of the arrayset to return

	Returns

	ArraysetData accessor (set to read or write mode as appropriate) which
governs interaction with the data

	Return type

	Union[ArraysetDataReader, ArraysetDataWriter]

	Raises

	KeyError – If no arrayset with the given name exists in the checkout

	
init_arrayset(name: str, shape: Union[int, Tuple[int]] = None, dtype: numpy.dtype = None, prototype: numpy.ndarray = None, named_samples: bool = True, variable_shape: bool = False, *, backend: str = None) → hangar.arrayset.ArraysetDataWriter

	Initializes a arrayset in the repository.

Arraysets are groups of related data pieces (samples). All samples within
a arrayset have the same data type, and number of dimensions. The size of
each dimension can be either fixed (the default behavior) or variable
per sample.

For fixed dimension sizes, all samples written to the arrayset must have
the same size that was initially specified upon arrayset initialization.
Variable size arraysets on the other hand, can write samples with
dimensions of any size less than a maximum which is required to be set
upon arrayset creation.

	Parameters

	
	name (str) – The name assigned to this arrayset.

	shape (Union[int, Tuple[int]]) – The shape of the data samples which will be written in this arrayset.
This argument and the dtype argument are required if a prototype
is not provided, defaults to None.

	dtype (np.dtype) – The datatype of this arrayset. This argument and the shape argument
are required if a prototype is not provided., defaults to None.

	prototype (np.ndarray) – A sample array of correct datatype and shape which will be used to
initialize the arrayset storage mechanisms. If this is provided, the
shape and dtype arguments must not be set, defaults to None.

	named_samples (bool, optional) – If the samples in the arrayset have names associated with them. If set,
all samples must be provided names, if not, no name will be assigned.
defaults to True, which means all samples should have names.

	variable_shape (bool, optional) – If this is a variable sized arrayset. If true, a the maximum shape is
set from the provided shape or prototype argument. Any sample
added to the arrayset can then have dimension sizes <= to this
initial specification (so long as they have the same rank as what
was specified) defaults to False.

	backend (DEVELOPER USE ONLY. str, optional, kwarg only) – Backend which should be used to write the arrayset files on disk.

	Returns

	instance object of the initialized arrayset.

	Return type

	ArraysetDataWriter

	Raises

	
	ValueError – If provided name contains any non ascii, non alpha-numeric characters.

	ValueError – If required shape and dtype arguments are not provided in absence of
prototype argument.

	ValueError – If prototype argument is not a C contiguous ndarray.

	LookupError – If a arrayset already exists with the provided name.

	ValueError – If rank of maximum tensor shape > 31.

	ValueError – If zero sized dimension in shape argument

	ValueError – If the specified backend is not valid.

	
iswriteable

	Bool indicating if this arrayset object is write-enabled. Read-only attribute.

	
items() → Iterable[Tuple[str, Union[hangar.arrayset.ArraysetDataReader, hangar.arrayset.ArraysetDataWriter]]]

	generator providing access to arrayset_name, Arraysets

	Yields

	Iterable[Tuple[str, Union[ArraysetDataReader, ArraysetDataWriter]]] – returns two tuple of all all arrayset names/object pairs in the checkout.

	
keys() → List[str]

	list all arrayset keys (names) in the checkout

	Returns

	list of arrayset names

	Return type

	List[str]

	
multi_add(mapping: Mapping[str, numpy.ndarray]) → str

	Add related samples to un-named arraysets with the same generated key.

If you have multiple arraysets in a checkout whose samples are related to
each other in some manner, there are two ways of associating samples
together:

	using named arraysets and setting each tensor in each arrayset to the
same sample “name” using un-named arraysets.

	using this “add” method. which accepts a dictionary of “arrayset
names” as keys, and “tensors” (ie. individual samples) as values.

When method (2) - this method - is used, the internally generated sample
ids will be set to the same value for the samples in each arrayset. That
way a user can iterate over the arrayset key’s in one sample, and use
those same keys to get the other related tensor samples in another
arrayset.

	Parameters

	mapping (Mapping[str, np.ndarray]) – Dict mapping (any number of) arrayset names to tensor data (samples)
which to add. The arraysets must exist, and must be set to accept
samples which are not named by the user

	Returns

	generated id (key) which each sample is stored under in their
corresponding arrayset. This is the same for all samples specified in
the input dictionary.

	Return type

	str

	Raises

	KeyError – If no arrayset with the given name exists in the checkout

	
remote_sample_keys

	Determine arraysets samples names which reference remote sources.

	Returns

	dict where keys are arrayset names and values are iterables of
samples in the arrayset containing remote references

	Return type

	Mapping[str, Iterable[Union[int, str]]]

	
remove_aset(aset_name: str) → str

	remove the arrayset and all data contained within it from the repository.

	Parameters

	aset_name (str) – name of the arrayset to remove

	Returns

	name of the removed arrayset

	Return type

	str

	Raises

	KeyError – If a arrayset does not exist with the provided name

	
values() → Iterable[Union[hangar.arrayset.ArraysetDataReader, hangar.arrayset.ArraysetDataWriter]]

	yield all arrayset object instances in the checkout.

	Yields

	Iterable[Union[ArraysetDataReader, ArraysetDataWriter]] – Generator of ArraysetData accessor objects (set to read or write mode
as appropriate)

Arrayset Data

	
class ArraysetDataWriter

	Class implementing methods to write data to a arrayset.

Writer specific methods are contained here, and while read functionality is
shared with the methods common to ArraysetDataReader. Write-enabled
checkouts are not thread/process safe for either writes OR reads,
a restriction we impose for write-enabled checkouts in order to ensure
data integrity above all else.

See also

ArraysetDataReader

	
__contains__(key: Union[str, int]) → bool

	Determine if a key is a valid sample name in the arrayset

	Parameters

	key (Union[str, int]) – name to check if it is a sample in the arrayset

	Returns

	True if key exists, else False

	Return type

	bool

	
__delitem__(key: Union[str, int]) → Union[str, int]

	Remove a sample from the arrayset. Convenience method to remove().

See also

remove()

	Parameters

	key (Union[str, int]) – Name of the sample to remove from the arrayset

	Returns

	Name of the sample removed from the arrayset (assuming operation successful)

	Return type

	Union[str, int]

	
__getitem__(key: Union[str, int]) → numpy.ndarray

	Retrieve a sample with a given key. Convenience method for dict style access.

See also

get()

	Parameters

	key (Union[str, int]) – sample key to retrieve from the arrayset

	Returns

	sample array data corresponding to the provided key

	Return type

	np.ndarray

	
__len__() → int

	Check how many samples are present in a given arrayset

	Returns

	number of samples the arrayset contains

	Return type

	int

	
__setitem__(key: Union[str, int], value: numpy.ndarray) → Union[str, int]

	Store a piece of data in a arrayset. Convenience method to add().

See also

add()

	Parameters

	
	key (Union[str, int]) – name of the sample to add to the arrayset

	value (np.array) – tensor data to add as the sample

	Returns

	sample name of the stored data (assuming operation was successful)

	Return type

	Union[str, int]

	
add(data: numpy.ndarray, name: Union[str, int] = None, **kwargs) → Union[str, int]

	Store a piece of data in a arrayset

	Parameters

	
	data (np.ndarray) – data to store as a sample in the arrayset.

	name (Union[str, int], optional) – name to assign to the same (assuming the arrayset accepts named
samples), If str, can only contain alpha-numeric ascii characters
(in addition to ‘-‘, ‘.’, ‘_’). Integer key must be >= 0. by default
None

	Returns

	sample name of the stored data (assuming the operation was successful)

	Return type

	Union[str, int]

	Raises

	
	ValueError – If no name arg was provided for arrayset requiring named samples.

	ValueError – If input data tensor rank exceeds specified rank of arrayset samples.

	ValueError – For variable shape arraysets, if a dimension size of the input data
tensor exceeds specified max dimension size of the arrayset samples.

	ValueError – For fixed shape arraysets, if input data dimensions do not exactly match
specified arrayset dimensions.

	ValueError – If type of data argument is not an instance of np.ndarray.

	ValueError – If data is not “C” contiguous array layout.

	ValueError – If the datatype of the input data does not match the specified data type of
the arrayset

	
contains_remote_references

	Bool indicating if all samples exist locally or if some reference remote sources.

	
dtype

	Datatype of the arrayset schema. Read-only attribute.

	
get(name: Union[str, int]) → numpy.ndarray

	Retrieve a sample in the arrayset with a specific name.

The method is thread/process safe IF used in a read only checkout. Use
this if the calling application wants to manually manage multiprocess
logic for data retrieval. Otherwise, see the get_batch() method
to retrieve multiple data samples simultaneously. This method uses
multiprocess pool of workers (managed by hangar) to drastically increase
access speed and simplify application developer workflows.

Note

in most situations, we have observed little to no performance
improvements when using multithreading. However, access time can be
nearly linearly decreased with the number of CPU cores / workers if
multiprocessing is used.

	Parameters

	name (Union[str, int]) – Name of the sample to retrieve data for.

	Returns

	Tensor data stored in the arrayset archived with provided name(s).

	Return type

	np.ndarray

	Raises

	KeyError – if the arrayset does not contain data with the provided name

	
get_batch(names: Iterable[Union[str, int]], *, n_cpus: int = None, start_method: str = 'spawn') → List[numpy.ndarray]

	Retrieve a batch of sample data with the provided names.

This method is (technically) thread & process safe, though it should not
be called in parallel via multithread/process application code; This
method has been seen to drastically decrease retrieval time of sample
batches (as compared to looping over single sample names sequentially).
Internally it implements a multiprocess pool of workers (managed by
hangar) to simplify application developer workflows.

	Parameters

	
	name (Iterable[Union[str, int]]) – list/tuple of sample names to retrieve data for.

	n_cpus (int, kwarg-only) – if not None, uses num_cpus / 2 of the system for retrieval. Setting
this value to 1 will not use a multiprocess pool to perform the
work. Default is None

	start_method (str, kwarg-only) – One of ‘spawn’, ‘fork’, ‘forkserver’ specifying the process pool
start method. Not all options are available on all platforms. see
python multiprocess docs for details. Default is ‘spawn’.

	Returns

	Tensor data stored in the arrayset archived with provided name(s).

If a single sample name is passed in as the, the corresponding
np.array data will be returned.

If a list/tuple of sample names are pass in the names argument,
a tuple of size len(names) will be returned where each element
is an np.array containing data at the position it’s name listed in
the names parameter.

	Return type

	List[np.ndarray]

	Raises

	KeyError – if the arrayset does not contain data with the provided name

	
iswriteable

	Bool indicating if this arrayset object is write-enabled. Read-only attribute.

	
items() → Iterator[Tuple[Union[str, int], numpy.ndarray]]

	generator yielding two-tuple of (name, tensor), for every sample in the arrayset.

For write enabled checkouts, is technically possible to iterate over the
arrayset object while adding/deleting data, in order to avoid internal
python runtime errors (dictionary changed size during iteration we
have to make a copy of they key list before beginning the loop.) While
not necessary for read checkouts, we perform the same operation for both
read and write checkouts in order in order to avoid differences.

	Yields

	Iterator[Tuple[Union[str, int], np.ndarray]] – sample name and stored value for every sample inside the arrayset

	
keys() → Iterator[Union[str, int]]

	generator which yields the names of every sample in the arrayset

For write enabled checkouts, is technically possible to iterate over the
arrayset object while adding/deleting data, in order to avoid internal
python runtime errors (dictionary changed size during iteration we
have to make a copy of they key list before beginning the loop.) While
not necessary for read checkouts, we perform the same operation for both
read and write checkouts in order in order to avoid differences.

	Yields

	Iterator[Union[str, int]] – keys of one sample at a time inside the arrayset

	
name

	Name of the arrayset. Read-Only attribute.

	
named_samples

	Bool indicating if samples are named. Read-only attribute.

	
remote_reference_sample_keys

	Returns sample names whose data is stored in a remote server reference.

	Returns

	list of sample keys in the arrayset.

	Return type

	List[Union[str, int]]

	
remove(name: Union[str, int]) → Union[str, int]

	Remove a sample with the provided name from the arrayset.

Note

This operation will NEVER actually remove any data from disk. If
you commit a tensor at any point in time, it will always remain
accessible by checking out a previous commit when the tensor was
present. This is just a way to tell Hangar that you don’t want some
piece of data to clutter up the current version of the repository.

Warning

Though this may change in a future release, in the current version of
Hangar, we cannot recover references to data which was added to the
staging area, written to disk, but then removed before a commit
operation was run. This would be a similar sequence of events as:
checking out a git branch, changing a bunch of text in the file, and
immediately performing a hard reset. If it was never committed, git
doesn’t know about it, and (at the moment) neither does Hangar.

	Parameters

	name (Union[str, int]) – name of the sample to remove.

	Returns

	If the operation was successful, name of the data sample deleted.

	Return type

	Union[str, int]

	Raises

	KeyError – If a sample with the provided name does not exist in the arrayset.

	
shape

	Shape (or max_shape) of the arrayset sample tensors. Read-only attribute.

	
values() → Iterator[numpy.ndarray]

	generator which yields the tensor data for every sample in the arrayset

For write enabled checkouts, is technically possible to iterate over the
arrayset object while adding/deleting data, in order to avoid internal
python runtime errors (dictionary changed size during iteration we
have to make a copy of they key list before beginning the loop.) While
not necessary for read checkouts, we perform the same operation for both
read and write checkouts in order in order to avoid differences.

	Yields

	Iterator[np.ndarray] – values of one sample at a time inside the arrayset

	
variable_shape

	Bool indicating if arrayset schema is variable sized. Read-only attribute.

Metadata

	
class MetadataWriter

	Class implementing write access to repository metadata.

Similar to the ArraysetDataWriter, this class
inherits the functionality of the MetadataReader for reading. The
only difference is that the reader will be initialized with data records
pointing to the staging area, and not a commit which is checked out.

Note

Write-enabled metadata objects are not thread or process safe. Read-only
checkouts can use multithreading safety to retrieve data via the
standard MetadataReader.get() calls

See also

MetadataReader for the intended use of this functionality.

	
__contains__(key: Union[str, int]) → bool

	Determine if a key with the provided name is in the metadata

	Parameters

	key (Union[str, int]) – key to check for containment testing

	Returns

	True if key exists, False otherwise

	Return type

	bool

	
__delitem__(key: Union[str, int]) → Union[str, int]

	Remove a key/value pair from metadata. Convenience method to remove().

See also

remove() for the function this calls into.

	Parameters

	key (Union[str, int]) – Name of the metadata piece to remove.

	Returns

	Metadata key removed from the checkout (assuming operation successful)

	Return type

	Union[str, int]

	
__getitem__(key: Union[str, int]) → str

	Retrieve a metadata sample with a key. Convenience method for dict style access.

See also

get()

	Parameters

	key (Union[str, int]) – metadata key to retrieve from the checkout

	Returns

	value of the metadata key/value pair stored in the checkout.

	Return type

	string

	
__len__() → int

	Determine how many metadata key/value pairs are in the checkout

	Returns

	number of metadata key/value pairs.

	Return type

	int

	
__setitem__(key: Union[str, int], value: str) → Union[str, int]

	Store a key/value pair as metadata. Convenience method to add().

See also

add()

	Parameters

	
	key (Union[str, int]) – name of the key to add as metadata

	value (string) – value to add as metadata

	Returns

	key of the stored metadata sample (assuming operation was successful)

	Return type

	Union[str, int]

	
add(key: Union[str, int], value: str) → Union[str, int]

	Add a piece of metadata to the staging area of the next commit.

	Parameters

	
	key (Union[str, int]) – Name of the metadata piece, alphanumeric ascii characters only

	value (string) – Metadata value to store in the repository, any length of valid
ascii characters.

	Returns

	The name of the metadata key written to the database if the
operation succeeded.

	Return type

	Union[str, int]

	Raises

	
	ValueError – If the key contains any whitespace or non alpha-numeric characters.

	ValueError – If the value contains any non ascii characters.

	
get(key: Union[str, int]) → str

	retrieve a piece of metadata from the checkout.

	Parameters

	key (Union[str, int]) – The name of the metadata piece to retrieve.

	Returns

	The stored metadata value associated with the key.

	Return type

	str

	Raises

	
	ValueError – If the key is not str type or contains whitespace or non
alpha-numeric characters.

	KeyError – If no metadata exists in the checkout with the provided key.

	
iswriteable

	Read-only attribute indicating if this metadata object is write-enabled.

	Returns

	True if write-enabled checkout, Otherwise False.

	Return type

	bool

	
items() → Iterator[Tuple[Union[str, int], str]]

	generator yielding key/value for all metadata recorded in checkout.

For write enabled checkouts, is technically possible to iterate over the
metadata object while adding/deleting data, in order to avoid internal
python runtime errors (dictionary changed size during iteration we
have to make a copy of they key list before beginning the loop.) While
not necessary for read checkouts, we perform the same operation for both
read and write checkouts in order in order to avoid differences.

	Yields

	Iterator[Tuple[Union[str, int], np.ndarray]] – metadata key and stored value for every piece in the checkout.

	
keys() → Iterator[Union[str, int]]

	generator which yields the names of every metadata piece in the checkout.

For write enabled checkouts, is technically possible to iterate over the
metadata object while adding/deleting data, in order to avoid internal
python runtime errors (dictionary changed size during iteration we
have to make a copy of they key list before beginning the loop.) While
not necessary for read checkouts, we perform the same operation for both
read and write checkouts in order in order to avoid differences.

	Yields

	Iterator[Union[str, int]] – keys of one metadata sample at a time

	
remove(key: Union[str, int]) → Union[str, int]

	Remove a piece of metadata from the staging area of the next commit.

	Parameters

	key (Union[str, int]) – Metadata name to remove.

	Returns

	Name of the metadata key/value pair removed, if the operation was
successful.

	Return type

	Union[str, int]

	Raises

	
	ValueError – If the key provided is not string type and containing only
ascii-alphanumeric characters.

	KeyError – If the checkout does not contain metadata with the provided key.

	
values() → Iterator[str]

	generator yielding all metadata values in the checkout

For write enabled checkouts, is technically possible to iterate over the
metadata object while adding/deleting data, in order to avoid internal
python runtime errors (dictionary changed size during iteration we
have to make a copy of they key list before beginning the loop.) While
not necessary for read checkouts, we perform the same operation for both
read and write checkouts in order in order to avoid differences.

	Yields

	Iterator[str] – values of one metadata piece at a time

Differ

	
class WriterUserDiff

	Methods diffing contents of a WriterCheckout instance.

These provide diffing implementations to compare the current HEAD of a
checkout to a branch, commit, or the staging area "base" contents. The
results are generally returned as a nested set of named tuples. In
addition, the status() method is implemented which can be used to
quickly determine if there are any uncommitted changes written in the
checkout.

When diffing of commits or branches is performed, if there is not a linear
history of commits between current HEAD and the diff commit (ie. a
history which would permit a "fast-forward" merge), the result field
named conflict will contain information on any merge conflicts that
would exist if staging area HEAD and the (compared) "dev" HEAD were
merged “right now”. Though this field is present for all diff comparisons,
it can only contain non-empty values in the cases where a three way merge
would need to be performed.

Fast Forward is Possible
========================

 (master) (foo)
a ----- b ----- c ----- d

3-Way Merge Required
====================

 (master)
a ----- b ----- c ----- d
 \
 \ (foo)
 \----- ee ----- ff

	
branch(dev_branch: str) → hangar.diff.DiffAndConflicts

	Compute diff between HEAD and branch, returning user-facing results.

	Parameters

	dev_branch (str) – name of the branch whose HEAD will be used to calculate the diff of.

	Returns

	two-tuple of diff, conflict (if any) calculated in the diff
algorithm.

	Return type

	DiffAndConflicts

	Raises

	ValueError – If the specified dev_branch does not exist.

	
commit(dev_commit_hash: str) → hangar.diff.DiffAndConflicts

	Compute diff between HEAD and commit, returning user-facing results.

	Parameters

	dev_commit_hash (str) – hash of the commit to be used as the comparison.

	Returns

	two-tuple of diff, conflict (if any) calculated in the diff
algorithm.

	Return type

	DiffAndConflicts

	Raises

	ValueError – if the specified dev_commit_hash is not a valid commit reference.

	
staged() → hangar.diff.DiffAndConflicts

	Return diff of staging area to base, returning user-facing results.

	Returns

	two-tuple of diff, conflict (if any) calculated in the diff
algorithm.

	Return type

	DiffAndConflicts

	
status() → str

	Determine if changes have been made in the staging area

If the contents of the staging area and it’s parent commit are the
same, the status is said to be “CLEAN”. If even one arrayset or
metadata record has changed however, the status is “DIRTY”.

	Returns

	“CLEAN” if no changes have been made, otherwise “DIRTY”

	Return type

	str

Read Only Checkout

	
class ReaderCheckout

	Checkout the repository as it exists at a particular branch.

This class is instantiated automatically from a repository checkout
operation. This object will govern all access to data and interaction methods
the user requests.

>>> co = repo.checkout()
>>> isinstance(co, ReaderCheckout)
True

If a commit hash is provided, it will take precedent over the branch name
parameter. If neither a branch not commit is specified, the staging
environment’s base branch HEAD commit hash will be read.

>>> co = repo.checkout(commit='foocommit')
>>> co.commit_hash
'foocommit'
>>> co.close()
>>> co = repo.checkout(branch='testbranch')
>>> co.commit_hash
'someothercommithashhere'
>>> co.close()

Unlike WriterCheckout, any number of ReaderCheckout
objects can exist on the repository independently. Like the
write-enabled variant, the close() method should be called after
performing the necessary operations on the repo. However, as there is no
concept of a lock for read-only checkouts, this is just to free up
memory resources, rather than changing recorded access state.

In order to reduce the chance that the python interpreter is shut down
without calling close(), - a common mistake during ipython / jupyter
sessions - an atexit [https://docs.python.org/3/library/atexit.html]
hook is registered to close(). If properly closed by the user, the
hook is unregistered after completion with no ill effects. So long as a the
process is NOT terminated via non-python SIGKILL, fatal internal python
error, or or special os exit methods, cleanup will occur on interpreter
shutdown and resources will be freed. If a non-handled termination method
does occur, the implications of holding resources varies on a per-OS basis.
While no risk to data integrity is observed, repeated misuse may require a
system reboot in order to achieve expected performance characteristics.

	
__getitem__(index)

	Dictionary style access to arraysets and samples

Checkout object can be thought of as a “dataset” (“dset”) mapping a
view of samples across arraysets.

>>> dset = repo.checkout(branch='master')

Get an arrayset contained in the checkout.

>>> dset['foo']
ArraysetDataReader

Get a specific sample from 'foo' (returns a single array)

>>> dset['foo', '1']
np.array([1])

Get multiple samples from 'foo' (retuns a list of arrays, in order
of input keys)

>>> dset['foo', ['1', '2', '324']]
[np.array([1]), np.ndarray([2]), np.ndarray([324])]

Get sample from multiple arraysets (returns namedtuple of arrays, field
names = arrayset names)

>>> dset[('foo', 'bar', 'baz'), '1']
ArraysetData(foo=array([1]), bar=array([11]), baz=array([111]))

Get multiple samples from multiple arraysets(returns list of namedtuple
of array sorted in input key order, field names = arrayset names)

>>> dset[('foo', 'bar'), ('1', '2')]
[ArraysetData(foo=array([1]), bar=array([11])),
 ArraysetData(foo=array([2]), bar=array([22]))]

Get samples from all arraysets (shortcut syntax)

>>> out = dset[:, ('1', '2')]
>>> out = dset[..., ('1', '2')]
>>> out
[ArraysetData(foo=array([1]), bar=array([11]), baz=array([111])),
 ArraysetData(foo=array([2]), bar=array([22]), baz=array([222]))]

>>> out = dset[:, '1']
>>> out = dset[..., '1']
>>> out
ArraysetData(foo=array([1]), bar=array([11]), baz=array([111]))

	Parameters

	index – Please see detailed explanation above for full options. Hard coded
options are the order to specification.

The first element (or collection) specified must be str type and
correspond to an arrayset name(s). Alternativly the Ellipsis operator
(...) or unbounded slice operator (: <==> slice(None)) can
be used to indicate “select all” behavior.

If a second element (or collection) is present, the keys correspond to
sample names present within (all) the specified arraysets. If a key is
not present in even on arrayset, the entire get operation will
abort with KeyError. If desired, the same selection syntax can be
used with the get() method, which
will not Error in these situations, but simply return None values
in the appropriate position for keys which do not exist.

	Returns

	
	Arrayset – single arrayset parameter, no samples specified

	np.ndarray – Single arrayset specified, single sample key specified

	List[np.ndarray] – Single arrayset, multiple samples array data for each sample is
returned in same order sample keys are recieved.

	List[NamedTuple[*np.ndarray]] – Multiple arraysets, multiple samples. Each arrayset’s name is used
as a field in the NamedTuple elements, each NamedTuple contains
arrays stored in each arrayset via a common sample key. Each sample
key is returned values as an individual element in the
List. The sample order is returned in the same order it wasw recieved.

Notes

	All specified arraysets must exist

	All specified sample keys must exist in all specified arraysets,
otherwise standard exception thrown

	Slice syntax cannot be used in sample keys field

	Slice syntax for arrayset field cannot specify start, stop, or
step fields, it is soley a shortcut syntax for ‘get all arraysets’ in
the : or slice(None) form

	
arraysets

	Provides access to arrayset interaction object.

Can be used to either return the arraysets accessor for all elements or
a single arrayset instance by using dictionary style indexing.

>>> co = repo.checkout(write=False)
>>> len(co.arraysets)
1
>>> print(co.arraysets.keys())
['foo']

>>> fooAset = co.arraysets['foo']
>>> fooAset.dtype
np.fooDtype

>>> asets = co.arraysets
>>> fooAset = asets['foo']
>>> fooAset = asets.get('foo')
>>> fooAset.dtype
np.fooDtype

See also

The class Arraysets contains all methods
accessible by this property accessor

	Returns

	weakref proxy to the arraysets object which behaves exactly like a
arraysets accessor class but which can be invalidated when the writer
lock is released.

	Return type

	Arraysets

	
close() → None

	Gracefully close the reader checkout object.

Though not strictly required for reader checkouts (as opposed to
writers), closing the checkout after reading will free file handles and
system resources, which may improve performance for repositories with
multiple simultaneous read checkouts.

	
commit_hash

	Commit hash this read-only checkout’s data is read from.

>>> co.commit_hash
foohashdigesthere

	Returns

	commit hash of the checkout

	Return type

	string

	
diff

	Access the differ methods for a read-only checkout.

See also

The class ReaderUserDiff contains all methods accessible
by this property accessor

	Returns

	weakref proxy to the differ object (and contained methods) which behaves
exactly like the differ class but which can be invalidated when the
writer lock is released.

	Return type

	ReaderUserDiff

	
get(arraysets, samples, *, except_missing=False)

	View of sample data across arraysets gracefully handeling missing sample keys.

Please see __getitem__() for full description. This method is
identical with a single exception: if a sample key is not present in an
arrayset, this method will plane a null None value in it’s return
slot rather than throwing a KeyError like the dict style access
does.

	Parameters

	
	arraysets (Union[str, Iterable[str], Ellipses, slice(None)]) – Name(s) of the arraysets to query. The Ellipsis operator (...)
or unbounded slice operator (: <==> slice(None)) can be
used to indicate “select all” behavior.

	samples (Union[str, int, Iterable[Union[str, int]]]) – Names(s) of the samples to query

	except_missing (bool, **KWARG ONLY) – If False, will not throw exceptions on missing sample key value.
Will raise KeyError if True and missing key found.

	Returns

	
	Arrayset – single arrayset parameter, no samples specified

	np.ndarray – Single arrayset specified, single sample key specified

	List[np.ndarray] – Single arrayset, multiple samples array data for each sample is
returned in same order sample keys are recieved.

	List[NamedTuple[*np.ndarray]] – Multiple arraysets, multiple samples. Each arrayset’s name is used
as a field in the NamedTuple elements, each NamedTuple contains
arrays stored in each arrayset via a common sample key. Each sample
key is returned values as an individual element in the
List. The sample order is returned in the same order it wasw recieved.

	
metadata

	Provides access to metadata interaction object.

See also

The class hangar.metadata.MetadataReader contains all methods
accessible by this property accessor

	Returns

	weakref proxy to the metadata object which behaves exactly like a
metadata class but which can be invalidated when the writer lock is
released.

	Return type

	MetadataReader

Arraysets

	
class Arraysets

	Common access patterns and initialization/removal of arraysets in a checkout.

This object is the entry point to all tensor data stored in their individual
arraysets. Each arrayset contains a common schema which dictates the general
shape, dtype, and access patters which the backends optimize access for. The
methods contained within allow us to create, remove, query, and access these
collections of common tensors.

	
__contains__(key: str) → bool

	Determine if a arrayset with a particular name is stored in the checkout

	Parameters

	key (str) – name of the arrayset to check for

	Returns

	True if a arrayset with the provided name exists in the checkout,
otherwise False.

	Return type

	bool

	
__getitem__(key: str) → Union[hangar.arrayset.ArraysetDataReader, hangar.arrayset.ArraysetDataWriter]

	Dict style access to return the arrayset object with specified key/name.

	Parameters

	key (string) – name of the arrayset object to get.

	Returns

	The object which is returned depends on the mode of checkout specified.
If the arrayset was checked out with write-enabled, return writer object,
otherwise return read only object.

	Return type

	ArraysetDataReader or ArraysetDataWriter

	
get(name: str) → Union[hangar.arrayset.ArraysetDataReader, hangar.arrayset.ArraysetDataWriter]

	Returns a arrayset access object.

This can be used in lieu of the dictionary style access.

	Parameters

	name (str) – name of the arrayset to return

	Returns

	ArraysetData accessor (set to read or write mode as appropriate) which
governs interaction with the data

	Return type

	Union[ArraysetDataReader, ArraysetDataWriter]

	Raises

	KeyError – If no arrayset with the given name exists in the checkout

	
iswriteable

	Bool indicating if this arrayset object is write-enabled. Read-only attribute.

	
items() → Iterable[Tuple[str, Union[hangar.arrayset.ArraysetDataReader, hangar.arrayset.ArraysetDataWriter]]]

	generator providing access to arrayset_name, Arraysets

	Yields

	Iterable[Tuple[str, Union[ArraysetDataReader, ArraysetDataWriter]]] – returns two tuple of all all arrayset names/object pairs in the checkout.

	
keys() → List[str]

	list all arrayset keys (names) in the checkout

	Returns

	list of arrayset names

	Return type

	List[str]

	
values() → Iterable[Union[hangar.arrayset.ArraysetDataReader, hangar.arrayset.ArraysetDataWriter]]

	yield all arrayset object instances in the checkout.

	Yields

	Iterable[Union[ArraysetDataReader, ArraysetDataWriter]] – Generator of ArraysetData accessor objects (set to read or write mode
as appropriate)

Arrayset Data

	
class ArraysetDataReader

	Class implementing get access to data in a arrayset.

The methods implemented here are common to the ArraysetDataWriter
accessor class as well as to this "read-only" method. Though minimal,
the behavior of read and write checkouts is slightly unique, with the main
difference being that "read-only" checkouts implement both thread and
process safe access methods. This is not possible for "write-enabled"
checkouts, and attempts at multiprocess/threaded writes will generally
fail with cryptic error messages.

	
__contains__(key: Union[str, int]) → bool

	Determine if a key is a valid sample name in the arrayset

	Parameters

	key (Union[str, int]) – name to check if it is a sample in the arrayset

	Returns

	True if key exists, else False

	Return type

	bool

	
__getitem__(key: Union[str, int]) → numpy.ndarray

	Retrieve a sample with a given key. Convenience method for dict style access.

See also

get()

	Parameters

	key (Union[str, int]) – sample key to retrieve from the arrayset

	Returns

	sample array data corresponding to the provided key

	Return type

	np.ndarray

	
__len__() → int

	Check how many samples are present in a given arrayset

	Returns

	number of samples the arrayset contains

	Return type

	int

	
contains_remote_references

	Bool indicating if all samples exist locally or if some reference remote sources.

	
dtype

	Datatype of the arrayset schema. Read-only attribute.

	
get(name: Union[str, int]) → numpy.ndarray

	Retrieve a sample in the arrayset with a specific name.

The method is thread/process safe IF used in a read only checkout. Use
this if the calling application wants to manually manage multiprocess
logic for data retrieval. Otherwise, see the get_batch() method
to retrieve multiple data samples simultaneously. This method uses
multiprocess pool of workers (managed by hangar) to drastically increase
access speed and simplify application developer workflows.

Note

in most situations, we have observed little to no performance
improvements when using multithreading. However, access time can be
nearly linearly decreased with the number of CPU cores / workers if
multiprocessing is used.

	Parameters

	name (Union[str, int]) – Name of the sample to retrieve data for.

	Returns

	Tensor data stored in the arrayset archived with provided name(s).

	Return type

	np.ndarray

	Raises

	KeyError – if the arrayset does not contain data with the provided name

	
get_batch(names: Iterable[Union[str, int]], *, n_cpus: int = None, start_method: str = 'spawn') → List[numpy.ndarray]

	Retrieve a batch of sample data with the provided names.

This method is (technically) thread & process safe, though it should not
be called in parallel via multithread/process application code; This
method has been seen to drastically decrease retrieval time of sample
batches (as compared to looping over single sample names sequentially).
Internally it implements a multiprocess pool of workers (managed by
hangar) to simplify application developer workflows.

	Parameters

	
	name (Iterable[Union[str, int]]) – list/tuple of sample names to retrieve data for.

	n_cpus (int, kwarg-only) – if not None, uses num_cpus / 2 of the system for retrieval. Setting
this value to 1 will not use a multiprocess pool to perform the
work. Default is None

	start_method (str, kwarg-only) – One of ‘spawn’, ‘fork’, ‘forkserver’ specifying the process pool
start method. Not all options are available on all platforms. see
python multiprocess docs for details. Default is ‘spawn’.

	Returns

	Tensor data stored in the arrayset archived with provided name(s).

If a single sample name is passed in as the, the corresponding
np.array data will be returned.

If a list/tuple of sample names are pass in the names argument,
a tuple of size len(names) will be returned where each element
is an np.array containing data at the position it’s name listed in
the names parameter.

	Return type

	List[np.ndarray]

	Raises

	KeyError – if the arrayset does not contain data with the provided name

	
iswriteable

	Bool indicating if this arrayset object is write-enabled. Read-only attribute.

	
items() → Iterator[Tuple[Union[str, int], numpy.ndarray]]

	generator yielding two-tuple of (name, tensor), for every sample in the arrayset.

For write enabled checkouts, is technically possible to iterate over the
arrayset object while adding/deleting data, in order to avoid internal
python runtime errors (dictionary changed size during iteration we
have to make a copy of they key list before beginning the loop.) While
not necessary for read checkouts, we perform the same operation for both
read and write checkouts in order in order to avoid differences.

	Yields

	Iterator[Tuple[Union[str, int], np.ndarray]] – sample name and stored value for every sample inside the arrayset

	
keys() → Iterator[Union[str, int]]

	generator which yields the names of every sample in the arrayset

For write enabled checkouts, is technically possible to iterate over the
arrayset object while adding/deleting data, in order to avoid internal
python runtime errors (dictionary changed size during iteration we
have to make a copy of they key list before beginning the loop.) While
not necessary for read checkouts, we perform the same operation for both
read and write checkouts in order in order to avoid differences.

	Yields

	Iterator[Union[str, int]] – keys of one sample at a time inside the arrayset

	
name

	Name of the arrayset. Read-Only attribute.

	
named_samples

	Bool indicating if samples are named. Read-only attribute.

	
remote_reference_sample_keys

	Returns sample names whose data is stored in a remote server reference.

	Returns

	list of sample keys in the arrayset.

	Return type

	List[Union[str, int]]

	
shape

	Shape (or max_shape) of the arrayset sample tensors. Read-only attribute.

	
values() → Iterator[numpy.ndarray]

	generator which yields the tensor data for every sample in the arrayset

For write enabled checkouts, is technically possible to iterate over the
arrayset object while adding/deleting data, in order to avoid internal
python runtime errors (dictionary changed size during iteration we
have to make a copy of they key list before beginning the loop.) While
not necessary for read checkouts, we perform the same operation for both
read and write checkouts in order in order to avoid differences.

	Yields

	Iterator[np.ndarray] – values of one sample at a time inside the arrayset

	
variable_shape

	Bool indicating if arrayset schema is variable sized. Read-only attribute.

Metadata

	
class MetadataReader

	Class implementing get access to the metadata in a repository.

Unlike the ArraysetDataReader and
ArraysetDataWriter, the equivalent Metadata classes do
not need a factory function or class to coordinate access through the
checkout. This is primarily because the metadata is only stored at a single
level, and because the long term storage is must simpler than for array
data (just write to a lmdb database).

Note

It is important to realize that this is not intended to serve as a general
store large amounts of textual data, and has no optimization to support
such use cases at this time. This should only serve to attach helpful
labels, or other quick information primarily intended for human
book-keeping, to the main tensor data!

Note

Write-enabled metadata objects are not thread or process safe. Read-only
checkouts can use multithreading safety to retrieve data via the standard
MetadataReader.get() calls

	
__contains__(key: Union[str, int]) → bool

	Determine if a key with the provided name is in the metadata

	Parameters

	key (Union[str, int]) – key to check for containment testing

	Returns

	True if key exists, False otherwise

	Return type

	bool

	
__getitem__(key: Union[str, int]) → str

	Retrieve a metadata sample with a key. Convenience method for dict style access.

See also

get()

	Parameters

	key (Union[str, int]) – metadata key to retrieve from the checkout

	Returns

	value of the metadata key/value pair stored in the checkout.

	Return type

	string

	
__len__() → int

	Determine how many metadata key/value pairs are in the checkout

	Returns

	number of metadata key/value pairs.

	Return type

	int

	
get(key: Union[str, int]) → str

	retrieve a piece of metadata from the checkout.

	Parameters

	key (Union[str, int]) – The name of the metadata piece to retrieve.

	Returns

	The stored metadata value associated with the key.

	Return type

	str

	Raises

	
	ValueError – If the key is not str type or contains whitespace or non
alpha-numeric characters.

	KeyError – If no metadata exists in the checkout with the provided key.

	
iswriteable

	Read-only attribute indicating if this metadata object is write-enabled.

	Returns

	True if write-enabled checkout, Otherwise False.

	Return type

	bool

	
items() → Iterator[Tuple[Union[str, int], str]]

	generator yielding key/value for all metadata recorded in checkout.

For write enabled checkouts, is technically possible to iterate over the
metadata object while adding/deleting data, in order to avoid internal
python runtime errors (dictionary changed size during iteration we
have to make a copy of they key list before beginning the loop.) While
not necessary for read checkouts, we perform the same operation for both
read and write checkouts in order in order to avoid differences.

	Yields

	Iterator[Tuple[Union[str, int], np.ndarray]] – metadata key and stored value for every piece in the checkout.

	
keys() → Iterator[Union[str, int]]

	generator which yields the names of every metadata piece in the checkout.

For write enabled checkouts, is technically possible to iterate over the
metadata object while adding/deleting data, in order to avoid internal
python runtime errors (dictionary changed size during iteration we
have to make a copy of they key list before beginning the loop.) While
not necessary for read checkouts, we perform the same operation for both
read and write checkouts in order in order to avoid differences.

	Yields

	Iterator[Union[str, int]] – keys of one metadata sample at a time

	
values() → Iterator[str]

	generator yielding all metadata values in the checkout

For write enabled checkouts, is technically possible to iterate over the
metadata object while adding/deleting data, in order to avoid internal
python runtime errors (dictionary changed size during iteration we
have to make a copy of they key list before beginning the loop.) While
not necessary for read checkouts, we perform the same operation for both
read and write checkouts in order in order to avoid differences.

	Yields

	Iterator[str] – values of one metadata piece at a time

Differ

	
class ReaderUserDiff

	Methods diffing contents of a ReaderCheckout instance.

These provide diffing implementations to compare the current checkout
HEAD of a to a branch or commit. The results are generally returned as
a nested set of named tuples.

When diffing of commits or branches is performed, if there is not a linear
history of commits between current HEAD and the diff commit (ie. a
history which would permit a "fast-forward" merge), the result field
named conflict will contain information on any merge conflicts that
would exist if staging area HEAD and the (compared) "dev" HEAD were
merged “right now”. Though this field is present for all diff comparisons,
it can only contain non-empty values in the cases where a three way merge
would need to be performed.

Fast Forward is Possible
========================

 (master) (foo)
a ----- b ----- c ----- d

3-Way Merge Required
====================

 (master)
a ----- b ----- c ----- d
 \
 \ (foo)
 \----- ee ----- ff

	
branch(dev_branch: str) → hangar.diff.DiffAndConflicts

	Compute diff between HEAD and branch name, returning user-facing results.

	Parameters

	dev_branch (str) – name of the branch whose HEAD will be used to calculate the diff of.

	Returns

	two-tuple of diff, conflict (if any) calculated in the diff
algorithm.

	Return type

	DiffAndConflicts

	Raises

	ValueError – If the specified dev_branch does not exist.

	
commit(dev_commit_hash: str) → hangar.diff.DiffAndConflicts

	Compute diff between HEAD and commit hash, returning user-facing results.

	Parameters

	dev_commit_hash (str) – hash of the commit to be used as the comparison.

	Returns

	two-tuple of diff, conflict (if any) calculated in the diff
algorithm.

	Return type

	DiffAndConflicts

	Raises

	ValueError – if the specified dev_commit_hash is not a valid commit reference.

ML Framework Dataloaders

Tensorflow

	
make_tf_dataset(arraysets, keys: Sequence[str] = None, index_range: slice = None, shuffle: bool = True)

	Uses the hangar arraysets to make a tensorflow dataset. It uses
from_generator function from tensorflow.data.Dataset with a generator
function that wraps all the hangar arraysets. In such instances tensorflow
Dataset does shuffle by loading the subset of data which can fit into the
memory and shuffle that subset. Since it is not really a global shuffle
make_tf_dataset accepts a shuffle argument which will be used by the
generator to shuffle each time it is being called.

Warning

tf.data.Dataset.from_generator currently uses tf.compat.v1.py_func()
internally. Hence the serialization function (yield_data) will not be
serialized in a GraphDef. Therefore, you won’t be able to serialize your
model and restore it in a different environment if you use
make_tf_dataset. The operation must run in the same address space as the
Python program that calls tf.compat.v1.py_func(). If you are using
distributed TensorFlow, you must run a tf.distribute.Server in the same
process as the program that calls tf.compat.v1.py_func() and you must pin
the created operation to a device in that server (e.g. using with
tf.device():)

	Parameters

	
	arraysets (ArraysetDataReader or Sequence) – A arrayset object, a tuple of arrayset object or a list of arrayset
objects`

	keys (Sequence[str]) – An iterable of sample names. If given only those samples will fetched from
the arrayset

	index_range (slice) – A python slice object which will be used to find the subset of arrayset.
Argument keys takes priority over index_range i.e. if both are given,
keys will be used and index_range will be ignored

	shuffle (bool) – generator uses this to decide a global shuffle accross all the samples is
required or not. But user doesn’t have any restriction on
doing`arrayset.shuffle()` on the returned arrayset

Examples

>>> from hangar import Repository
>>> from hangar import make_tf_dataset
>>> import tensorflow as tf
>>> tf.compat.v1.enable_eager_execution()
>>> repo = Repository('.')
>>> co = repo.checkout()
>>> data = co.arraysets['mnist_data']
>>> target = co.arraysets['mnist_target']
>>> tf_dset = make_tf_dataset([data, target])
>>> tf_dset = tf_dset.batch(512)
>>> for bdata, btarget in tf_dset:
... print(bdata.shape, btarget.shape)

	Returns

	

	Return type

	tf.data.Dataset

Pytorch

	
make_torch_dataset(arraysets, keys: Sequence[str] = None, index_range: slice = None, field_names: Sequence[str] = None)

	Returns a torch.utils.data.Dataset object which can be loaded into a
torch.utils.data.DataLoader.

	Parameters

	
	arraysets (ArraysetDataReader or Sequence) – A arrayset object, a tuple of arrayset object or a list of arrayset
objects.

	keys (Sequence[str]) – An iterable collection of sample names. If given only those samples will
fetched from the arrayset

	index_range (slice) – A python slice object which will be used to find the subset of arrayset.
Argument keys takes priority over range i.e. if both are given, keys
will be used and range will be ignored

	field_names (list or tuple of str) – An array of field names used as the field_names for the returned
namedtuple. If not given, arrayset names will be used as the field_names.

Examples

>>> from hangar import Repository
>>> from torch.utils.data import DataLoader
>>> from hangar import make_torch_dataset
>>> repo = Repository('.')
>>> co = repo.checkout()
>>> aset = co.arraysets['dummy_aset']
>>> torch_dset = make_torch_dataset(aset, index_range=slice(1, 100))
>>> loader = DataLoader(torch_dset, batch_size=16)
>>> for batch in loader:
... train_model(batch)

	Returns

	

	Return type

	torch.utils.data.Dataset

Hangar CLI Documentation

The CLI described below is automatically available after the Hangar python
package has been installed (either through a package manager or via source
builds). In general, the commands require the terminals cwd to be at the
same level the repository was initially created in.

Simply start by typing $ hangar --help in your terminal to get started!

hangar

hangar [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	display current Hangar Version

branch

operate on and list branch pointers.

hangar branch [OPTIONS] COMMAND [ARGS]...

create

Create a branch with NAME at STARTPOINT (short-digest or branch)

If no STARTPOINT is provided, the new branch is positioned at the HEAD of
the staging area branch, automatically.

hangar branch create [OPTIONS] NAME [STARTPOINT]

Arguments

	
NAME

	Required argument

	
STARTPOINT

	Optional argument

list

list all branch names

Includes both remote branches as well as local branches.

hangar branch list [OPTIONS]

clone

Initialize a repository at the current path and fetch updated records from REMOTE.

Note: This method does not actually download the data to disk. Please look
into the fetch-data command.

hangar clone [OPTIONS] REMOTE

Options

	
--name <name>

	first and last name of user

	
--email <email>

	email address of the user

	
--overwrite

	overwrite a repository if it exists at the current path

Arguments

	
REMOTE

	Required argument

export

export ARRAYSET sample data as it existed a STARTPOINT to some format and path.

hangar export [OPTIONS] STARTPOINT ARRAYSET

Options

	
-o, --out <out>

	Path to export the data to. [required]

	
-s, --sample <sample>

	Sample name to export

	
-f, --format <format_>

	File format used for exporting.

	
--plugin <plugin>

	override auto-infered plugin

Arguments

	
STARTPOINT

	Required argument

	
ARRAYSET

	Required argument

fetch

Retrieve the commit history from REMOTE for BRANCH.

This method does not fetch the data associated with the commits. See
fetch-data to download the tensor data corresponding to a commit.

hangar fetch [OPTIONS] REMOTE BRANCH

Arguments

	
REMOTE

	Required argument

	
BRANCH

	Required argument

fetch-data

Get data from REMOTE referenced by STARTPOINT (short-commit or branch).

The default behavior is to only download a single commit’s data or the HEAD
commit of a branch. Please review optional arguments for other behaviors

hangar fetch-data [OPTIONS] REMOTE STARTPOINT

Options

	
-d, --aset <aset>

	specify any number of aset keys to fetch data for.

	
-n, --nbytes <nbytes>

	total amount of data to retrieve in MB/GB.

	
-a, --all-history

	Retrieve data referenced in every parent commit accessible to the STARTPOINT

Arguments

	
REMOTE

	Required argument

	
STARTPOINT

	Required argument

import

Import file(s) at PATH to ARRAYSET in the staging area.

hangar import [OPTIONS] ARRAYSET PATH

Options

	
--plugin <plugin>

	override auto-infered plugin

	
--overwrite

	overwrite data samples with the same name as the imported data file

Arguments

	
ARRAYSET

	Required argument

	
PATH

	Required argument

init

Initialize an empty repository at the current path

hangar init [OPTIONS]

Options

	
--name <name>

	first and last name of user

	
--email <email>

	email address of the user

	
--overwrite

	overwrite a repository if it exists at the current path

log

Display commit graph starting at STARTPOINT (short-digest or name)

If no argument is passed in, the staging area branch HEAD will be used as the
starting point.

hangar log [OPTIONS] [STARTPOINT]

Arguments

	
STARTPOINT

	Optional argument

push

Upload local BRANCH commit history / data to REMOTE server.

hangar push [OPTIONS] REMOTE BRANCH

Arguments

	
REMOTE

	Required argument

	
BRANCH

	Required argument

remote

Operations for working with remote server references

hangar remote [OPTIONS] COMMAND [ARGS]...

add

Add a new remote server NAME with url ADDRESS to the local client.

This name must be unique. In order to update an old remote, please remove it
and re-add the remote NAME / ADDRESS combination

hangar remote add [OPTIONS] NAME ADDRESS

Arguments

	
NAME

	Required argument

	
ADDRESS

	Required argument

list

List all remote repository records.

hangar remote list [OPTIONS]

remove

Remove the remote server NAME from the local client.

This will not remove any tracked remote reference branches.

hangar remote remove [OPTIONS] NAME

Arguments

	
NAME

	Required argument

server

Start a hangar server, initializing one if does not exist.

The server is configured to top working in 24 Hours from the time it was
initially started. To modify this value, please see the --timeout
parameter.

The hangar server directory layout, contents, and access conventions are
similar, though significantly different enough to the regular user “client”
implementation that it is not possible to fully access all information via
regular API methods. These changes occur as a result of the uniformity of
operations promised by both the RPC structure and negotiations between the
client/server upon connection.

More simply put, we know more, so we can optimize access more; similar, but
not identical.

hangar server [OPTIONS]

Options

	
--overwrite

	overwrite the hangar server instance if it exists at the current path.

	
--ip <ip>

	the ip to start the server on. default is localhost [default: localhost]

	
--port <port>

	port to start the server on. default in 50051 [default: 50051]

	
--timeout <timeout>

	time (in seconds) before server is stopped automatically [default: 86400]

summary

Display content summary at STARTPOINT (short-digest or branch).

If no argument is passed in, the staging area branch HEAD wil be used as the
starting point. In order to recieve a machine readable, and more complete
version of this information, please see the Repository.summary() method
of the API.

hangar summary [OPTIONS] [STARTPOINT]

Arguments

	
STARTPOINT

	Optional argument

view

Use a plugin to view the data of some SAMPLE in ARRAYSET at STARTPOINT.

hangar view [OPTIONS] STARTPOINT ARRAYSET SAMPLE

Options

	
--plugin <plugin>

	Plugin name to use instead of auto-inferred plugin

Arguments

	
STARTPOINT

	Required argument

	
ARRAYSET

	Required argument

	
SAMPLE

	Required argument

Frequently Asked Questions

The following documentation are taken from questions and comments on the
Hangar User Group Slack Channel [https://hangarusergroup.slack.com]
and over various Github issues.

How can I get an Invite to the Hangar User Group?

Just click on This Signup Link [https://join.slack.com/t/hangarusergroup/shared_invite/enQtNjQ0NzM5ODQ1NjY1LWZlYmIzNTQ0ODZmOTAwMmNmOTgzZTAzM2NhMWE2MTNlMTRhMzNhN2Y3YmJmMjcwZDgxNDIyMDM1MzVhYzk4MjU]
to get started.

Data Integrity

Being a young project did you encounter some situations where the disaster
was not a compilation error but dataset corruption? This is the most fearing
aspect of using young projects but every project will start from a phase
before becoming mature and production ready.

An absolute requirement of a system right this is to protect user data at all
costs (I’ll refer to this as preserving data “integrity” from here). During our
initial design of the system, we made the decision that preserving integrity
comes above all other system parameters: including performance, disk size,
complexity of the hangar core, and even features should we not be able to make
them absolutely safe for the user. And to be honest, the very first versions of
hangar were quite slow and difficult to use as a result of this.

The initial versions of hangar (which we put together in ~2 weeks) had
essentially most of the features we have today. We’ve improved the API, made
things clearer, and added some visualization/reporting utilities, but not much
has changed. Essentially the entire development effort has been addressing
issues stemming from a fundamental need to protect user data at all costs. That
work has been very successful, and performance is extremely promising (and
improving all the time).

To get into the details here: There have been only 3 instances in the entire
time I’ve developed Hangar where we lost data irrecoverably:

	We used to move data around between folders with some regularity (as a
convenient way to mark some files as containing data which have been
“committed”, and can no longer be opened in anything but read-only mode).
There was a bug (which never made it past a local dev version) at one point
where I accidentally called shutil.rmtree(path) with a directory one
level too high… that wasn’t great.

Just to be clear, we don’t do this anymore (since disk IO costs are way too
high), but remnants of it’s intention are still very much alive and well.
Once data has been added to the repository, and is “committed”, the file
containing that data will never be opened in anything but read-only mode
again. This reduces the chance of disk corruption massively from the start.

	When I was implementing the numpy memmap array storage backend, I was
totally surprised during an early test when I:

- opened a write-enabled checkout
- added some data
- without committing, retrieved the same data again via the user facing API
- overwrote some slice of the return array with new data and did some processing
- asked hangar for that same array key again, and instead of returning
 the contents got a fatal RuntimeError raised by Hangar with the
 code/message indicating "'DATA CORRUPTION ERROR: Checksum {cksum} !=
 recorded for {hashVal}"

What had happened was that when opening a numpy.memmap array on disk in
w+ mode, the default behavior when returning a subarray is to return a
subclass of np.ndarray of type np.memmap. Though the numpy docs
state: “The memmap object can be used anywhere an ndarray is accepted. Given
a memmap fp, isinstance(fp, numpy.ndarray) returns True”. I did
not anticipate that updates to the subarray slice would also update the
memmap on disk. A simple mistake to make; this has since been remedied by
manually instantiating a new np.ndarray instance from the np.memmap
subarray slice buffer.

However, the nice part is that this was a real world proof that our system
design worked (and not just in tests). When you add data to a hangar
checkout (or receive it on a fetch/clone operation) we calculate a hash
digest of the data via blake2b (a cryptographically secure algorithm in the
python standard library). While this allows us to cryptographically verify full
integrity checks and history immutability, cryptographic hashes are slow by
design. When we want to read local data (which we’ve already ensured was
correct when it was placed on disk) it would be prohibitively slow to do a
full cryptographic verification on every read. However, since its NOT
acceptable to provide no integrity verification (even for local writes) we
compromise with a much faster (though non cryptographic) hash
digest/checksum. This operation occurs on EVERY read of data from disk.

The theory here is that even though Hangar makes every effort to guarantee
safe operations itself, in the real world we have to deal with systems which
break. We’ve planned for cases where some OS induced disk corruption occurs,
or where some malicious actor modifies the file contents manually; we can’t
stop that from happening, but Hangar can make sure that you will know about
it when it happens!

	Before we got smart with the HDF5 backend low level details, it was an issue
for us to have a write-enabled checkout attempt to write an array to disk
and immediately read it back in. I’ll gloss over the details for the sake of
simplicity here, but basically I was presented with an CRC32 Checksum
Verification Failed error in some edge cases. The interesting bit was that
if I closed the checkout, and reopened it, it data was secure and intact on
disk, but for immediate reads after writes, we weren’t propagating changes
to the HDF5 chunk metadata cache to rw operations appropriately.

This was fixed very early on by taking advantage of a new feature in HDF5
1.10.4 referred to as Single Writer Multiple Reader (SWMR). The long and
short is that by being careful to handle the order in which a new HDF5 file
is created on disk and opened in w and r mode with SWMR enabled, the HDF5
core guarantees the integrity of the metadata chunk cache at all times. Even
if a fatal system crash occurs in the middle of a write, the data will be
preserved. This solved this issue completely for us

There are many many many more details which I could cover here, but the long
and short of it is that in order to ensure data integrity, Hangar is
designed to not let the user do anything they aren’t allowed to at any time

	Read checkouts have no ability to modify contents on disk via any
method. It’s not possible for them to actually delete or overwrite
anything in any way.

	Write checkouts can only ever write data. The only way to remove the
actual contents of written data from disk is if changes have been made
in the staging area (but not committed) and the
reset_staging_area() method is called. And even this has no
ability to remove any data which had previously existed in some commit
in the repo’s history

In addition, a hangar checkout object is not what it appears to be (at first
glance, use, or even during common introspection operations). If you try to
operate on it after closing the checkout, or holding it while another
checkout is started, you won’t be able to (there’s a whole lot of invisible
“magic” going on with weakrefs, objectproxies, and instance
attributes). I would encourage you to do the following:

>>> co = repo.checkout(write=True)
>>> co.metadata['hello'] = 'world'
>>> # try to hold a reference to the metadata object:
>>> mRef = co.metadata
>>> mRef['hello']
'world'
>>> co.commit('first commit')
>>> co.close()
>>> # what happens when you try to access the `co` or `mRef` object?
>>> mRef['hello']
ReferenceError: weakly-referenced object no longer exists
>>> print(co) # or any other operation
PermissionError: Unable to operate on past checkout objects which have been closed. No operation occurred. Please use a new checkout.

The last bit i’ll leave you with is a note on context managers and performance
(how we handle record data safety and effectively

See also

	Hangar Tutorial (Part 1, In section: “performance”)

	Hangar Under The Hood

How Can a Hangar Repository be Backed Up?

Two strategies exist:

	Use a remote server and Hangar’s built in ability to just push data to a
remote! (tutorial coming soon, see Python API for more details.

	A hangar repository is self contained in it’s .hangar directory. To back
up the data, just copy/paste or rsync it to another machine! (edited)

On Determining Arrayset Schema Sizes

Say I have a data group that specifies a data array with one dimension,
three elements (say height, width, num channels) and later on I want to add
bit depth. Can I do that, or do I need to make a new data group? Should it
have been three scalar data groups from the start?

So right now it’s not possible to change the schema (shape, dtype) of a
arrayset. I’ve thought about such a feature for a while now, and while it will
require a new user facing API option, its (almost) trivial to make it work in
the core. It just hasn’t seemed like a priority yet…

And no, I wouldn’t specify each of those as scalar data groups, they are a
related piece of information, and generally would want to be accessed together

Access patterns should generally dictate how much info is placed in a arrayset

Is there a performance/space penalty for having lots of small data groups?

As far as a performance / space penalty, this is where it gets good :)

	Using fewer arraysets means that there are fewer records (the internal
locating info, kind-of like a git tree) to store, since each record points to
a sample containing more information.

	Using more arraysets means that the likelihood of samples having the same
value increases, meaning fewer pieces of data are actually stored on disk
(remember it’s a content addressable file store)

However, since the size of a record (40 bytes or so before compression, and we
generally see compression ratios around 15-30% of the original size once the
records are committed) is generally negligible compared to the size of data on
disk, optimizing for number of records is just way overkill. For this case, it
really doesn’t matter. Optimize for ease of use

Note

The following documentation contains highly technical descriptions of the
data writing and loading backends of the hangar core. It is intended for
developer use only, with the functionality described herein being completely
hidden from regular users.

Any questions or comments can be directed to the Hangar Github Issues Page [https://github.com/tensorwerk/hangar-py/issues]

Backend selection

Definition and dynamic routing to Hangar backend implementations.

This module defines the available backends for a Hangar installation & provides
dynamic routing of method calls to the appropriate backend from a stored record
specification.

Identification

A two character ascii code identifies which backend/version some record belongs
to. Valid characters are the union of ascii_lowercase, ascii_uppercase,
and ascii_digits:

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
Though stored as bytes in the backend, we use human readable characters (and not
unprintable bytes) to aid in human tasks like developer database dumps and
debugging. The characters making up the two digit code have the following
symantic meanings:

	First Character (element 0) indicates the backend type used.

	Second character (element 1) indicates the version of the backend type
which should be used to parse the specification & accesss data (more on
this later)

The number of codes possible (a 2-choice permutation with repetition) is: 3844
which we anticipate to be more then sufficient long into the future. As a
convention, the range of values in which the first digit of the code falls into
can be used to identify the storage medium location:

	Lowercase ascii_letters & digits [0, 1, 2, 3, 4] -> reserved for
backends handling data on the local disk.

	Uppercase ascii_letters & digits [5, 6, 7, 8, 9] -> reserved for
backends referring to data residing on a remote server.

This is not a hard and fast rule though, and can be changed in the future if the
need arises.

Process & Guarantees

In order to maintain backwards compatibility across versions of Hangar into the
future the following ruleset is specified and MUST BE HONORED:

	When a new backend is proposed, the contributor(s) provide the class with a
meaningful name (HDF5, NUMPY, TILEDB, etc) identifying the
backend to Hangar developers. The review team will provide:

	backend type code

	version code

which all records related to that implementation identify themselves with. In
addition, Externally facing classes / methods go by a canonical name which is
the concatenation of the meaningful name and assigned "format code"
ie. for backend name: 'NUMPY' assigned type code: '1' and version
code: '0' must start external method/class names with: NUMPY_10_foo

	Once a new backend is accepted, the code assigned to it is PERMANENT &
UNCHANGING. The same code cannot be used in the future for other backends.

	Each backend independently determines the information it needs to log/store
to uniquely identify and retrieve a sample stored by it. There is no standard
format, each is free to define whatever fields they find most convenient.
Unique encode/decode methods are defined in order to serialize this
information to bytes and then reconstruct the information later. These bytes
are what are passed in when a retrieval request is made, and returned when a
storage request for some piece of data is performed.

	Once accepted, The record format specified (ie. the byte representation
described above) cannot be modified in any way. This must remain permanent!

	Backend (internal) methods can be updated, optimized, and/or changed at any
time so long as:

	No changes to the record format specification are introduced

	Data stored via any previous iteration of the backend’s accessor methods
can be retrieved bitwise exactly by the “updated” version.

Before proposing a new backend or making changes to this file, please consider
reaching out to the Hangar core development team so we can guide you through the
process.

Backend Specifications

	Local HDF5 Backend

	Local NP Memmap Backend

	Remote Server Unknown Backend

Local HDF5 Backend

Local HDF5 Backend Implementation, Identifier: HDF5_00

Backend Identifiers

	Backend: 0

	Version: 0

	Format Code: 00

	Canonical Name: HDF5_00

Storage Method

	Data is written to specific subarray indexes inside an HDF5 “dataset” in a
single HDF5 File.

	In each HDF5 File there are COLLECTION_COUNT “datasets” (named ["0" :
"{COLLECTION_COUNT}"]). These are referred to as "dataset number"

	Each dataset is a zero-initialized array of:

	dtype: {schema_dtype}; ie np.float32 or np.uint8

	shape: (COLLECTION_SIZE, *{schema_shape.size}); ie (500, 10) or
(500, 300). The first index in the dataset is referred to as a
collection index. See technical note below for detailed explanation
on why the flatten operaiton is performed.

	Compression Filters, Chunking Configuration/Options are applied globally for
all datasets in a file at dataset creation time.

Record Format

Fields Recorded for Each Array

	Format Code

	File UID

	Dataset Number (0:COLLECTION_COUNT dataset selection)

	Collection Index (0:COLLECTION_SIZE dataset subarray selection)

	Subarray Shape

Separators used

	SEP_KEY: ":"

	SEP_HSH: "$"

	SEP_LST: " "

	SEP_SLC: "*"

Examples

	Adding the first piece of data to a file:

	Array shape (Subarray Shape): (10)

	File UID: “2HvGf9”

	Dataset Number: “0”

	Collection Index: 0

Record Data => "00:2HvGf9$0 0*10"

	Adding to a piece of data to a the middle of a file:

	Array shape (Subarray Shape): (20, 2, 3)

	File UID: “WzUtdu”

	Dataset Number: “3”

	Collection Index: 199

Record Data => "00:WzUtdu$3 199*20 2 3"

Technical Notes

	Files are read only after initial creation/writes. Only a write-enabled
checkout can open a HDF5 file in "w" or "a" mode, and writer
checkouts create new files on every checkout, and make no attempt to fill in
unset locations in previous files. This is not an issue as no disk space is
used until data is written to the initially created “zero-initialized”
collection datasets

	On write: Single Writer Multiple Reader (SWMR) mode is set to ensure that
improper closing (not calling .close()) method does not corrupt any data
which had been previously flushed to the file.

	On read: SWMR is set to allow multiple readers (in different threads /
processes) to read from the same file. File handle serialization is handled
via custom python pickle serialization/reduction logic which is
implemented by the high level pickle reduction __set_state__(),
__get_state__() class methods.

	An optimization is performed in order to increase the read / write
performance of variable shaped datasets. Due to the way that we initialize
an entire HDF5 file with all datasets pre-created (to the size of the max
subarray shape), we need to ensure that storing smaller sized arrays (in a
variable sized Hangar Arrayset) would be effective. Because we use chunked
storage, certain dimensions which are incomplete could have potentially
required writes to chunks which do are primarily empty (worst case “C” index
ordering), increasing read / write speeds significantly.

To overcome this, we create HDF5 datasets which have COLLECTION_SIZE
first dimension size, and only ONE second dimension of size
schema_shape.size() (ie. product of all dimensions). For example an
array schema with shape (10, 10, 3) would be stored in a HDF5 dataset of
shape (COLLECTION_SIZE, 300). Chunk sizes are chosen to align on the first
dimension with a second dimension of size which fits the total data into L2
CPU Cache (< 256 KB). On write, we use the np.ravel function to
construct a “view” (not copy) of the array as a 1D array, and then on read
we reshape the array to the recorded size (a copyless “view-only”
operation). This is part of the reason that we only accept C ordered arrays
as input to Hangar.

Local NP Memmap Backend

Local Numpy memmap Backend Implementation, Identifier: NUMPY_10

Backend Identifiers

	Backend: 1

	Version: 0

	Format Code: 10

	Canonical Name: NUMPY_10

Storage Method

	Data is written to specific subarray indexes inside a numpy memmapped array on disk.

	Each file is a zero-initialized array of

	dtype: {schema_dtype}; ie np.float32 or np.uint8

	shape: (COLLECTION_SIZE, *{schema_shape}); ie (500, 10) or (500,
4, 3). The first index in the array is referred to as a “collection
index”.

Record Format

Fields Recorded for Each Array

	Format Code

	File UID

	Alder32 Checksum

	Collection Index (0:COLLECTION_SIZE subarray selection)

	Subarray Shape

Separators used

	SEP_KEY: ":"

	SEP_HSH: "$"

	SEP_LST: " "

	SEP_SLC: "*"

Examples

	Adding the first piece of data to a file:

	Array shape (Subarray Shape): (10)

	File UID: “NJUUUK”

	Alder32 Checksum: 900338819

	Collection Index: 2

Record Data => '10:NJUUUK$900338819$2*10'

	Adding to a piece of data to a the middle of a file:

	Array shape (Subarray Shape): (20, 2, 3)

	File UID: “Mk23nl”

	Alder32 Checksum: 2546668575

	Collection Index: 199

Record Data => "10:Mk23nl$2546668575$199*20 2 3"

Technical Notes

	A typical numpy memmap file persisted to disk does not retain information
about its datatype or shape, and as such must be provided when re-opened
after close. In order to persist a memmap in .npy format, we use the a
special function open_memmap imported from np.lib.format which can
open a memmap file and persist necessary header info to disk in .npy
format.

	On each write, an alder32 checksum is calculated. This is not for use as
the primary hash algorithm, but rather stored in the local record format
itself to serve as a quick way to verify no disk corruption occurred. This is
required since numpy has no built in data integrity validation methods when
reading from disk.

Remote Server Unknown Backend

Remote server location unknown backend, Identifier: REMOTE_50

Backend Identifiers

	Backend: 5

	Version: 0

	Format Code: 50

	Canonical Name: REMOTE_50

Storage Method

	This backend merely acts to record that there is some data sample with some
hash and schema_shape present in the repository. It does not store the
actual data on the local disk, but indicates that if it should be retrieved,
you need to ask the remote hangar server for it. Once present on the local
disk, the backend locating info will be updated with one of the local data
backend specifications.

Record Format

Fields Recorded for Each Array

	Format Code

	Schema Hash

Separators used

	SEP_KEY: ":"

Examples

	Adding the first piece of data to a file:

	Schema Hash: “ae43A21a”

Record Data => '50:ae43A21a'

	Adding to a piece of data to a the middle of a file:

	Schema Hash: “ae43A21a”

Record Data => '50:ae43A21a'

Technical Notes

	The schema_hash field is required in order to allow effective placement of
actual retrieved data into suitable sized collections on a fetch-data()
operation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

All community members should read and abide by our Contributor Code of Conduct.

Bug reports

When reporting a bug [https://github.com/tensorwerk/hangar-py/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in
troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

Hangar could always use more documentation, whether as part of the
official Hangar docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/tensorwerk/hangar-py/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions
are welcome :)

Development

To set up hangar-py for local development:

	Fork hangar-py [https://github.com/tensorwerk/hangar-py]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:your_name_here/hangar-py.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, run all the checks, doc builder and spell
checker with tox [http://tox.readthedocs.io/en/latest/install.html] one
command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just
make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available
locally you can rely on Travis - it will run the tests [https://travis-ci.org/tensorwerk/hangar-py/pull_requests] for each change
you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Contributor Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at
hangar.info@tensorwerk.com. All complaints will
be reviewed and investigated and will result in a response that is deemed
necessary and appropriate to the circumstances. The project team is obligated to
maintain confidentiality with regard to the reporter of an incident. Further
details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org] homepage, version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

Authors

	Richard Izzo - rick@tensorwerk.com

	Luca Antiga - luca@tensorwerk.com

	Sherin Thomas - sherin@tensorwerk.com

Change Log

In-Progress [https://github.com/tensorwerk/hangar-py/compare/v0.3.0...master]

TBD

v0.3.0 [https://github.com/tensorwerk/hangar-py/compare/v0.2.0...v0.3.0] (2019-09-10)

New Features

	API addition allowing reading and writing arrayset data from a checkout object directly.
(#115 [https://github.com/tensorwerk/hangar-py/pull/115]) @rlizzo [https://github.com/rlizzo]

	Data importer, exporters, and viewers via CLI for common file formats. Includes plugin system
for easy extensibility in the future.
(#103 [https://github.com/tensorwerk/hangar-py/pull/103])
(@rlizzo [https://github.com/rlizzo], @hhsecond [https://github.com/hhsecond])

Improvements

	Added tutorial on working with remote data.
(#113 [https://github.com/tensorwerk/hangar-py/pull/113]) @rlizzo [https://github.com/rlizzo]

	Added Tutorial on Tensorflow and PyTorch Dataloaders.
(#117 [https://github.com/tensorwerk/hangar-py/pull/117]) @hhsecond [https://github.com/hhsecond]

	Large performance improvement to diff/merge algorithm (~30x previous).
(#112 [https://github.com/tensorwerk/hangar-py/pull/112]) @rlizzo [https://github.com/rlizzo]

	New commit hash algorithm which is much more reproducible in the long term.
(#120 [https://github.com/tensorwerk/hangar-py/pull/120]) @rlizzo [https://github.com/rlizzo]

	HDF5 backend updated to increase speed of reading/writing variable sized dataset compressed chunks
(#120 [https://github.com/tensorwerk/hangar-py/pull/120]) @rlizzo [https://github.com/rlizzo]

Bug Fixes

	Fixed ML Dataloaders errors for a number of edge cases surrounding partial-remote data and non-common keys.
(#110 [https://github.com/tensorwerk/hangar-py/pull/110])
(@hhsecond [https://github.com/hhsecond], @rlizzo [https://github.com/rlizzo])

Breaking changes

	New commit hash algorithm is incompatible with repositories written in version 0.2.0 or earlier

v0.2.0 [https://github.com/tensorwerk/hangar-py/compare/v0.1.1...v0.2.0] (2019-08-09)

New Features

	Numpy memory-mapped array file backend added.
(#70 [https://github.com/tensorwerk/hangar-py/pull/70]) @rlizzo [https://github.com/rlizzo]

	Remote server data backend added.
(#70 [https://github.com/tensorwerk/hangar-py/pull/70]) @rlizzo [https://github.com/rlizzo]

	Selection heuristics to determine appropriate backend from arrayset schema.
(#70 [https://github.com/tensorwerk/hangar-py/pull/70]) @rlizzo [https://github.com/rlizzo]

	Partial remote clones and fetch operations now fully supported.
(#85 [https://github.com/tensorwerk/hangar-py/pull/85]) @rlizzo [https://github.com/rlizzo]

	CLI has been placed under test coverage, added interface usage to docs.
(#85 [https://github.com/tensorwerk/hangar-py/pull/85]) @rlizzo [https://github.com/rlizzo]

	TensorFlow and PyTorch Machine Learning Dataloader Methods (Experimental Release).
(#91 [https://github.com/tensorwerk/hangar-py/pull/91])
lead: @hhsecond [https://github.com/hhsecond], co-author: @rlizzo [https://github.com/rlizzo],
reviewed by: @elistevens [https://github.com/elistevens]

Improvements

	Record format versioning and standardization so to not break backwards compatibility in the future.
(#70 [https://github.com/tensorwerk/hangar-py/pull/70]) @rlizzo [https://github.com/rlizzo]

	Backend addition and update developer protocols and documentation.
(#70 [https://github.com/tensorwerk/hangar-py/pull/70]) @rlizzo [https://github.com/rlizzo]

	Read-only checkout arrayset sample get methods now are multithread and multiprocess safe.
(#84 [https://github.com/tensorwerk/hangar-py/pull/84]) @rlizzo [https://github.com/rlizzo]

	Read-only checkout metadata sample get methods are thread safe if used within a context manager.
(#101 [https://github.com/tensorwerk/hangar-py/pull/101]) @rlizzo [https://github.com/rlizzo]

	Samples can be assigned integer names in addition to string names.
(#89 [https://github.com/tensorwerk/hangar-py/pull/89]) @rlizzo [https://github.com/rlizzo]

	Forgetting to close a write-enabled checkout before terminating the python process will close the
checkout automatically for many situations.
(#101 [https://github.com/tensorwerk/hangar-py/pull/101]) @rlizzo [https://github.com/rlizzo]

	Repository software version compatability methods added to ensure upgrade paths in the future.
(#101 [https://github.com/tensorwerk/hangar-py/pull/101]) @rlizzo [https://github.com/rlizzo]

	Many tests added (including support for Mac OSX on Travis-CI).
lead: @rlizzo [https://github.com/rlizzo], co-author: @hhsecond [https://github.com/hhsecond]

Bug Fixes

	Diff results for fast forward merges now returns sensible results.
(#77 [https://github.com/tensorwerk/hangar-py/pull/77]) @rlizzo [https://github.com/rlizzo]

	Many type annotations added, and developer documentation improved.
@hhsecond [https://github.com/hhsecond] & @rlizzo [https://github.com/rlizzo]

Breaking changes

	Renamed all references to datasets in the API / world-view to arraysets.

	These are backwards incompatible changes. For all versions > 0.2, repository upgrade utilities will
be provided if breaking changes occur.

v0.1.1 [https://github.com/tensorwerk/hangar-py/compare/v0.1.0...v0.1.1] (2019-05-24)

Bug Fixes

	Fixed typo in README which was uploaded to PyPi

v0.1.0 [https://github.com/tensorwerk/hangar-py/compare/v0.0.0...v0.1.0] (2019-05-24)

New Features

	Remote client-server config negotiation and administrator permissions.
(#10 [https://github.com/tensorwerk/hangar-py/pull/10]) @rlizzo [https://github.com/rlizzo]

	Allow single python process to access multiple repositories simultaneously.
(#20 [https://github.com/tensorwerk/hangar-py/pull/20]) @rlizzo [https://github.com/rlizzo]

	Fast-Forward and 3-Way Merge and Diff methods now fully supported and behaving as expected.
(#32 [https://github.com/tensorwerk/hangar-py/pull/32]) @rlizzo [https://github.com/rlizzo]

Improvements

	Initial test-case specification.
(#14 [https://github.com/tensorwerk/hangar-py/pull/14]) @hhsecond [https://github.com/hhsecond]

	Checkout test-case work.
(#25 [https://github.com/tensorwerk/hangar-py/pull/25]) @hhsecond [https://github.com/hhsecond]

	Metadata test-case work.
(#27 [https://github.com/tensorwerk/hangar-py/pull/27]) @hhsecond [https://github.com/hhsecond]

	Any potential failure cases raise exceptions instead of silently returning.
(#16 [https://github.com/tensorwerk/hangar-py/pull/16]) @rlizzo [https://github.com/rlizzo]

	Many usability improvements in a variety of commits.

Bug Fixes

	Ensure references to checkout arrayset or metadata objects cannot operate after the checkout is closed.
(#41 [https://github.com/tensorwerk/hangar-py/pull/41]) @rlizzo [https://github.com/rlizzo]

	Sensible exception classes and error messages raised on a variety of situations (Many commits).
@hhsecond [https://github.com/hhsecond] & @rlizzo [https://github.com/rlizzo]

	Many minor issues addressed.

API Additions

	Refer to API documentation (#23 [https://github.com/tensorwerk/hangar-py/pull/23])

Breaking changes

	All repositories written with previous versions of Hangar are liable to break when using this version. Please upgrade versions immediately.

v0.0.0 [https://github.com/tensorwerk/hangar-py/commit/2aff3805c66083a7fbb2ebf701ceaf38ac5165c7] (2019-04-15)

	First Public Release of Hangar!

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hangar	

 	
 	
 hangar.backends.hdf5_00	

 	
 	
 hangar.backends.numpy_10	

 	
 	
 hangar.backends.remote_50	

 	
 	
 hangar.backends.selection	

 	
 	
 hangar.repository	

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | V
 | W

Symbols

 	
 	
 --email <email>

 	hangar-clone command line option

 	hangar-init command line option

 	
 --ip <ip>

 	hangar-server command line option

 	
 --name <name>

 	hangar-clone command line option

 	hangar-init command line option

 	
 --overwrite

 	hangar-clone command line option

 	hangar-import command line option

 	hangar-init command line option

 	hangar-server command line option

 	
 --plugin <plugin>

 	hangar-export command line option

 	hangar-import command line option

 	hangar-view command line option

 	
 	
 --port <port>

 	hangar-server command line option

 	
 --timeout <timeout>

 	hangar-server command line option

 	
 --version

 	hangar command line option

 	
 -a, --all-history

 	hangar-fetch-data command line option

 	
 -d, --aset <aset>

 	hangar-fetch-data command line option

 	
 -f, --format <format_>

 	hangar-export command line option

 	
 -n, --nbytes <nbytes>

 	hangar-fetch-data command line option

 	
 -o, --out <out>

 	hangar-export command line option

 	
 -s, --sample <sample>

 	hangar-export command line option

_

 	
 	__contains__() (ArraysetDataReader method)

 	(ArraysetDataWriter method)

 	(Arraysets method), [1]

 	(MetadataReader method)

 	(MetadataWriter method)

 	__delitem__() (ArraysetDataWriter method)

 	(Arraysets method)

 	(MetadataWriter method)

 	__getitem__() (ArraysetDataReader method)

 	(ArraysetDataWriter method)

 	(Arraysets method), [1]

 	(MetadataReader method)

 	(MetadataWriter method)

 	(ReaderCheckout method)

 	(WriterCheckout method)

 	
 	__len__() (ArraysetDataReader method)

 	(ArraysetDataWriter method)

 	(MetadataReader method)

 	(MetadataWriter method)

 	__setitem__() (ArraysetDataWriter method)

 	(Arraysets method)

 	(MetadataWriter method)

 	(WriterCheckout method)

A

 	
 	add() (ArraysetDataWriter method)

 	(MetadataWriter method)

 	(Remotes method)

 	
 ADDRESS

 	hangar-remote-add command line option

 	
 ARRAYSET

 	hangar-export command line option

 	hangar-import command line option

 	hangar-view command line option

 	
 	ArraysetDataReader (class in hangar.arrayset)

 	ArraysetDataWriter (class in hangar.arrayset)

 	Arraysets (class in hangar.arrayset), [1]

 	arraysets (ReaderCheckout attribute)

 	(WriterCheckout attribute)

B

 	
 	
 BRANCH

 	hangar-fetch command line option

 	hangar-push command line option

 	
 	branch() (ReaderUserDiff method)

 	(WriterUserDiff method)

 	branch_name (WriterCheckout attribute)

C

 	
 	checkout() (Repository method)

 	clone() (Repository method)

 	close() (ReaderCheckout method)

 	(WriterCheckout method)

 	commit() (ReaderUserDiff method)

 	(WriterCheckout method)

 	(WriterUserDiff method)

 	
 	commit_hash (ReaderCheckout attribute)

 	(WriterCheckout attribute)

 	contains_remote_references (ArraysetDataReader attribute)

 	(ArraysetDataWriter attribute)

 	(Arraysets attribute)

 	create_branch() (Repository method)

D

 	
 	diff (ReaderCheckout attribute)

 	(WriterCheckout attribute)

 	
 	dtype (ArraysetDataReader attribute)

 	(ArraysetDataWriter attribute)

F

 	
 	fetch() (Remotes method)

 	
 	fetch_data() (Remotes method)

 	force_release_writer_lock() (Repository method)

G

 	
 	get() (ArraysetDataReader method)

 	(ArraysetDataWriter method)

 	(Arraysets method), [1]

 	(MetadataReader method)

 	(MetadataWriter method)

 	(ReaderCheckout method)

 	(WriterCheckout method)

 	
 	get_batch() (ArraysetDataReader method)

 	(ArraysetDataWriter method)

H

 	
 	
 hangar command line option

 	--version

 	
 hangar-branch-create command line option

 	NAME

 	STARTPOINT

 	
 hangar-clone command line option

 	--email <email>

 	--name <name>

 	--overwrite

 	REMOTE

 	
 hangar-export command line option

 	--plugin <plugin>

 	-f, --format <format_>

 	-o, --out <out>

 	-s, --sample <sample>

 	ARRAYSET

 	STARTPOINT

 	
 hangar-fetch command line option

 	BRANCH

 	REMOTE

 	
 hangar-fetch-data command line option

 	-a, --all-history

 	-d, --aset <aset>

 	-n, --nbytes <nbytes>

 	REMOTE

 	STARTPOINT

 	
 hangar-import command line option

 	--overwrite

 	--plugin <plugin>

 	ARRAYSET

 	PATH

 	
 	
 hangar-init command line option

 	--email <email>

 	--name <name>

 	--overwrite

 	
 hangar-log command line option

 	STARTPOINT

 	
 hangar-push command line option

 	BRANCH

 	REMOTE

 	
 hangar-remote-add command line option

 	ADDRESS

 	NAME

 	
 hangar-remote-remove command line option

 	NAME

 	
 hangar-server command line option

 	--ip <ip>

 	--overwrite

 	--port <port>

 	--timeout <timeout>

 	
 hangar-summary command line option

 	STARTPOINT

 	
 hangar-view command line option

 	--plugin <plugin>

 	ARRAYSET

 	SAMPLE

 	STARTPOINT

 	hangar.backends.hdf5_00 (module)

 	hangar.backends.numpy_10 (module)

 	hangar.backends.remote_50 (module)

 	hangar.backends.selection (module)

 	hangar.repository (module)

I

 	
 	init() (Repository method)

 	init_arrayset() (Arraysets method)

 	initialized (Repository attribute)

 	iswriteable (ArraysetDataReader attribute)

 	(ArraysetDataWriter attribute)

 	(Arraysets attribute), [1]

 	(MetadataReader attribute)

 	(MetadataWriter attribute)

 	
 	items() (ArraysetDataReader method)

 	(ArraysetDataWriter method)

 	(Arraysets method), [1]

 	(MetadataReader method)

 	(MetadataWriter method)

K

 	
 	keys() (ArraysetDataReader method)

 	(ArraysetDataWriter method)

 	(Arraysets method), [1]

 	(MetadataReader method)

 	(MetadataWriter method)

L

 	
 	list_all() (Remotes method)

 	
 	list_branches() (Repository method)

 	log() (Repository method)

M

 	
 	make_tf_dataset() (in module hangar)

 	make_torch_dataset() (in module hangar)

 	merge() (Repository method)

 	(WriterCheckout method)

 	
 	metadata (ReaderCheckout attribute)

 	(WriterCheckout attribute)

 	MetadataReader (class in hangar.metadata)

 	MetadataWriter (class in hangar.metadata)

 	multi_add() (Arraysets method)

N

 	
 	
 NAME

 	hangar-branch-create command line option

 	hangar-remote-add command line option

 	hangar-remote-remove command line option

 	
 	name (ArraysetDataReader attribute)

 	(ArraysetDataWriter attribute)

 	named_samples (ArraysetDataReader attribute)

 	(ArraysetDataWriter attribute)

P

 	
 	
 PATH

 	hangar-import command line option

 	
 	path (Repository attribute)

 	ping() (Remotes method)

 	push() (Remotes method)

R

 	
 	ReaderCheckout (class in hangar.checkout)

 	ReaderUserDiff (class in hangar.diff)

 	
 REMOTE

 	hangar-clone command line option

 	hangar-fetch command line option

 	hangar-fetch-data command line option

 	hangar-push command line option

 	remote (Repository attribute)

 	remote_reference_sample_keys (ArraysetDataReader attribute)

 	(ArraysetDataWriter attribute)

 	
 	remote_sample_keys (Arraysets attribute)

 	Remotes (class in hangar.repository)

 	remove() (ArraysetDataWriter method)

 	(MetadataWriter method)

 	(Remotes method)

 	remove_aset() (Arraysets method)

 	remove_branch() (Repository method)

 	Repository (class in hangar.repository)

 	reset_staging_area() (WriterCheckout method)

S

 	
 	
 SAMPLE

 	hangar-view command line option

 	shape (ArraysetDataReader attribute)

 	(ArraysetDataWriter attribute)

 	staged() (WriterUserDiff method)

 	
 STARTPOINT

 	hangar-branch-create command line option

 	hangar-export command line option

 	hangar-fetch-data command line option

 	hangar-log command line option

 	hangar-summary command line option

 	hangar-view command line option

 	
 	status() (WriterUserDiff method)

 	summary() (Repository method)

V

 	
 	values() (ArraysetDataReader method)

 	(ArraysetDataWriter method)

 	(Arraysets method), [1]

 	(MetadataReader method)

 	(MetadataWriter method)

 	
 	variable_shape (ArraysetDataReader attribute)

 	(ArraysetDataWriter attribute)

 	version (Repository attribute)

W

 	
 	writer_lock_held (Repository attribute)

 	
 	WriterCheckout (class in hangar.checkout)

 	WriterUserDiff (class in hangar.diff)

sphinx>=1.3
sphinx-rtd-theme
sphinx-click
nbsphinx
recommonmark
IPython
-e .

tensorflow
https://download.pytorch.org/whl/cpu/torch-1.1.0-cp37-cp37m-linux_x86_64.whl

builtin
builtins
classmethod
staticmethod
classmethods
staticmethods
args
kwargs
callstack
Changelog
Indices

 _static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Overview

_images/Tutorial-001_30_2.png

_images/Tutorial-Dataloader_7_2.png
100

150

20

0

_images/Tutorial-001_32_1.png

_images/Tutorial-Dataloader_37_0.png
Loss

11

10

09

08

07

06

05

04

Loss Plot

00

25

50

75

100
Epochs

15

150

s

_static/ajax-loader.gif

_images/repo_graph_log.png
* 2cd30b98d34f28f0 (31Mar2019 16:26:31) (test user): try number two

A\

%\ 9ec29571d67fa95f (31Mar2019 16:26:31) (test user): merging the long running branch into master
[AWAY

| | * 51bec9f355627596 (31Mar2019 16:26:31) (test user): another on try delete

* | | 69209d87ea946f43 (31Mar2019 16:26:31) (test user): another on master

|1/

1/1

* | d683cbhededdc8a89 (31Mar2019 16:26:31) (test user): this is the first merge

I\

| * | 1241a36e89201188 (31Mar2019 16:26:31) (test user): another commit on test banch after adding to new_set
| * | 8a6004f205fd7169 (31Mar2019 16:26:31) (test user): second commit on test branch with new dset

| * | a320ae935fc3b91b (31Mar2019 16:26:30) (test user): first commit on test branch

* | | fe@bcc6ad427d5950 (31Mar2019 16:26:30) (test user): third commit on master

177

* | e3e79dd897c3b120 (31Mar2019 16:26:30) (test user): second commit on master with training labels

| * 8eabd22a51c5818c (31Mar2019 16:26:22) (test user): first commit on the large branch

1/

* c1d596ed78f95f8f (31Mar2019 16:26:22) (test user): initial commit on master with training images

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

