
Hangar
Release 0.5.2

Aug 01, 2020

Contents

1 What is Hangar? 3

2 Installation 5

3 Documentation 7

4 Development 9
4.1 Overview . 9

4.1.1 What is Hangar? . 10
4.1.2 Installation . 10
4.1.3 Documentation . 11
4.1.4 Development . 11

4.2 Usage . 11
4.3 Installation . 11

4.3.1 Pre-Built Installation . 11
4.3.2 Source Installation . 12

4.4 Hangar Core Concepts . 12
4.4.1 What Is Hangar? . 12
4.4.2 Inspiration . 13
4.4.3 How Hangar Thinks About Data . 13
4.4.4 Implications of the Hangar Data Philosophy . 16
4.4.5 What’s Next? . 20

4.5 Python API . 20
4.5.1 Repository . 20
4.5.2 Write Enabled Checkout . 30
4.5.3 Read Only Checkout . 49
4.5.4 ML Framework Dataloaders . 61

4.6 Hangar Tutorial . 63
4.6.1 Quick Start Tutorial . 63
4.6.2 Quick Start for the Impatient . 64
4.6.3 Quick Start - with explanations . 66
4.6.4 Part 1: Creating A Repository And Working With Data . 72
4.6.5 Part 2: Checkouts, Branching, & Merging . 83
4.6.6 Part 3: Working With Remote Servers . 95
4.6.7 Dataloaders for Machine Learning (Tensorflow & PyTorch) 109
4.6.8 “Real World” Quick Start Tutorial . 119

4.7 Hangar Under The Hood . 129

i

4.7.1 Things In Life Change, Your Data Shouldn’t . 129
4.7.2 Data Is Large, We Don’t Waste Space . 129
4.7.3 The Basics of Collaboration: Branching and Merging . 130

4.8 Hangar CLI Documentation . 134
4.8.1 hangar . 135

4.9 Hangar External . 144
4.9.1 High Level Methods . 144
4.9.2 Plugin System . 146

4.10 Frequently Asked Questions . 148
4.10.1 How can I get an Invite to the Hangar User Group? . 148
4.10.2 Data Integrity . 148
4.10.3 How Can a Hangar Repository be Backed Up? . 150
4.10.4 On Determining Column Schema Sizes . 150

4.11 Backend selection . 151
4.11.1 Identification . 151
4.11.2 Process & Guarantees . 151
4.11.3 Backend Specifications . 152

4.12 Contributing to Hangar . 162
4.12.1 Contributing . 162
4.12.2 Contributor Code of Conduct . 164
4.12.3 Hangar Performance Benchmarking Suite . 165

4.13 Authors . 168
4.14 Change Log . 168

4.14.1 ‘0.5.2‘_ (2020-05-08) . 168
4.14.2 ‘0.5.1‘_ (2020-04-05) . 168
4.14.3 v0.5.0 (2020-04-4) . 168
4.14.4 v0.4.0 (2019-11-21) . 171
4.14.5 v0.3.0 (2019-09-10) . 172
4.14.6 v0.2.0 (2019-08-09) . 172
4.14.7 v0.1.1 (2019-05-24) . 173
4.14.8 v0.1.0 (2019-05-24) . 173
4.14.9 v0.0.0 (2019-04-15) . 174

5 Indices and tables 175

Python Module Index 177

Index 179

ii

Hangar, Release 0.5.2

docs
tests

package

Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software
era.

• Free software: Apache 2.0 license

Contents 1

https://readthedocs.org/projects/hangar-py
https://github.com/tensorwerk/hangar-py/actions?query=workflow%3A%22Run+Test+Suite%22+branch%3Amaster+event%3Apush+is%3Acompleted
https://codecov.io/gh/tensorwerk/hangar-py
https://lgtm.com/projects/g/tensorwerk/hangar-py/context:python
https://pypi.org/project/hangar
https://pypi.org/project/hangar
https://anaconda.org/conda-forge/hangar
https://pypi.org/project/hangar
https://pypi.org/project/hangar
https://github.com/tensorwerk/hangar-py/blob/master/LICENSE

Hangar, Release 0.5.2

2 Contents

CHAPTER 1

What is Hangar?

Hangar is based off the belief that too much time is spent collecting, managing, and creating home-brewed version
control systems for data. At it’s core Hangar is designed to solve many of the same problems faced by traditional code
version control system (ie. Git), just adapted for numerical data:

• Time travel through the historical evolution of a dataset.

• Zero-cost Branching to enable exploratory analysis and collaboration

• Cheap Merging to build datasets over time (with multiple collaborators)

• Completely abstracted organization and management of data files on disk

• Ability to only retrieve a small portion of the data (as needed) while still maintaining complete historical record

• Ability to push and pull changes directly to collaborators or a central server (ie a truly distributed version control
system)

The ability of version control systems to perform these tasks for codebases is largely taken for granted by almost every
developer today; However, we are in-fact standing on the shoulders of giants, with decades of engineering which has
resulted in these phenomenally useful tools. Now that a new era of “Data-Defined software” is taking hold, we find
there is a strong need for analogous version control systems which are designed to handle numerical data at large
scale. . . Welcome to Hangar!

The Hangar Workflow:

Checkout Branch
|

Create/Access Data
|

Add/Remove/Update Samples
|

Commit

Log Style Output:

3

Hangar, Release 0.5.2

* 5254ec (master) : merge commit combining training updates and new validation
→˓samples
|\
| * 650361 (add-validation-data) : Add validation labels and image data in isolated
→˓branch

* | 5f15b4 : Add some metadata for later reference and add new training samples
→˓received after initial import
|/

* baddba : Initial commit adding training images and labels

Learn more about what Hangar is all about at https://hangar-py.readthedocs.io/

4 Chapter 1. What is Hangar?

https://hangar-py.readthedocs.io/

CHAPTER 2

Installation

Hangar is in early alpha development release!

pip install hangar

5

Hangar, Release 0.5.2

6 Chapter 2. Installation

CHAPTER 3

Documentation

https://hangar-py.readthedocs.io/

7

https://hangar-py.readthedocs.io/

Hangar, Release 0.5.2

8 Chapter 3. Documentation

CHAPTER 4

Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

Windows
set PYTEST_ADDOPTS=--cov-append
tox

Other
PYTEST_ADDOPTS=--cov-append tox

4.1 Overview

docs
tests

package

Hangar is version control for tensor data. Commit, branch, merge, revert, and collaborate in the data-defined software
era.

9

https://readthedocs.org/projects/hangar-py
https://github.com/tensorwerk/hangar-py/actions?query=workflow%3A%22Run+Test+Suite%22+branch%3Amaster+event%3Apush+is%3Acompleted
https://codecov.io/gh/tensorwerk/hangar-py
https://lgtm.com/projects/g/tensorwerk/hangar-py/context:python
https://pypi.org/project/hangar
https://pypi.org/project/hangar
https://anaconda.org/conda-forge/hangar
https://pypi.org/project/hangar
https://pypi.org/project/hangar
https://github.com/tensorwerk/hangar-py/blob/master/LICENSE

Hangar, Release 0.5.2

• Free software: Apache 2.0 license

4.1.1 What is Hangar?

Hangar is based off the belief that too much time is spent collecting, managing, and creating home-brewed version
control systems for data. At it’s core Hangar is designed to solve many of the same problems faced by traditional code
version control system (ie. Git), just adapted for numerical data:

• Time travel through the historical evolution of a dataset.

• Zero-cost Branching to enable exploratory analysis and collaboration

• Cheap Merging to build datasets over time (with multiple collaborators)

• Completely abstracted organization and management of data files on disk

• Ability to only retrieve a small portion of the data (as needed) while still maintaining complete historical record

• Ability to push and pull changes directly to collaborators or a central server (ie a truly distributed version control
system)

The ability of version control systems to perform these tasks for codebases is largely taken for granted by almost every
developer today; However, we are in-fact standing on the shoulders of giants, with decades of engineering which has
resulted in these phenomenally useful tools. Now that a new era of “Data-Defined software” is taking hold, we find
there is a strong need for analogous version control systems which are designed to handle numerical data at large
scale. . . Welcome to Hangar!

The Hangar Workflow:

Checkout Branch
|

Create/Access Data
|

Add/Remove/Update Samples
|

Commit

Log Style Output:

* 5254ec (master) : merge commit combining training updates and new validation
→˓samples
|\
| * 650361 (add-validation-data) : Add validation labels and image data in isolated
→˓branch

* | 5f15b4 : Add some metadata for later reference and add new training samples
→˓received after initial import
|/

* baddba : Initial commit adding training images and labels

Learn more about what Hangar is all about at https://hangar-py.readthedocs.io/

4.1.2 Installation

Hangar is in early alpha development release!

10 Chapter 4. Development

https://hangar-py.readthedocs.io/

Hangar, Release 0.5.2

pip install hangar

4.1.3 Documentation

https://hangar-py.readthedocs.io/

4.1.4 Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

Windows
set PYTEST_ADDOPTS=--cov-append
tox

Other
PYTEST_ADDOPTS=--cov-append tox

4.2 Usage

To use Hangar in a project:

from hangar import Repository

Please refer to the Hangar Tutorial for examples, or Hangar Core Concepts to review the core concepts of the Hangar
system.

4.3 Installation

For general usage it is recommended that you use a pre-built version of Hangar, either from a Python Distribution, or
a pre-built wheel from PyPi.

4.3.1 Pre-Built Installation

Python Distributions

If you do not already use a Python Distribution, we recommend the Anaconda (or Miniconda) distribution, which
supports all major operating systems (Windows, MacOSX, & the typical Linux variations). Detailed usage instructions
are available on the anaconda website.

To install Hangar via the Anaconda Distribution (from the conda-forge conda channel):

conda install -c conda-forge hangar

4.2. Usage 11

https://hangar-py.readthedocs.io/
https://www.anaconda.com/distribution/
https://docs.conda.io/en/latest/miniconda.html
https://docs.anaconda.com/anaconda/
https://anaconda.org/conda-forge/hangar

Hangar, Release 0.5.2

Wheels (PyPi)

If you have an existing python installation on your computer, pre-built Hangar Wheels can be installed via pip from
the Python Package Index (PyPi):

pip install hangar

4.3.2 Source Installation

To install Hangar from source, clone the repository from Github:

git clone https://github.com/tensorwerk/hangar-py.git
cd hangar-py
python setup.py install

Or use pip on the local package if you want to install all dependencies automatically in a development environment:

pip install -e .

Source installation in Google colab

Google colab comes with an older version of h5py pre-installed which is not compatible with hangar. If you need to
install hangar from the source in google colab, make sure to uninstall the existing h5py

!pip uninstall h5py

Then follow the Source Installation steps given above.

4.4 Hangar Core Concepts

Warning: The usage info displayed in the latest build of the project documentation do not reflect recent
changes to the API and internal structure of the project. They should not be relied on at the current moment; they
will be updated over the next weeks, and will be in line before the next release.

This document provides a high level overview of the problems Hangar is designed to solve and introduces the core
concepts for beginning to use Hangar.

4.4.1 What Is Hangar?

At its core Hangar is designed to solve many of the same problems faced by traditional code version control system
(ie. Git), just adapted for numerical data:

• Time travel through the historical evolution of a dataset

• Zero-cost Branching to enable exploratory analysis and collaboration

• Cheap Merging to build datasets over time (with multiple collaborators)

• Completely abstracted organization and management of data files on disk

• Ability to only retrieve a small portion of the data (as needed) while still maintaining complete historical record

12 Chapter 4. Development

https://github.com/tensorwerk/hangar-py

Hangar, Release 0.5.2

• Ability to push and pull changes directly to collaborators or a central server (ie. a truly distributed version
control system)

The ability of version control systems to perform these tasks for codebases is largely taken for granted by almost every
developer today; however, we are in-fact standing on the shoulders of giants, with decades of engineering which has
resulted in these phenomenally useful tools. Now that a new era of “Data-Defined software” is taking hold, we find
there is a strong need for analogous version control systems which are designed to handle numerical data at large
scale. . . Welcome to Hangar!

4.4.2 Inspiration

The design of Hangar was heavily influenced by the Git source-code version control system. As a Hangar user, many
of the fundamental building blocks and commands can be thought of as interchangeable:

• checkout

• commit

• branch

• merge

• diff

• push

• pull/fetch

• log

Emulating the high level the git syntax has allowed us to create a user experience which should be familiar in many
ways to Hangar users; a goal of the project is to enable many of the same VCS workflows developers use for code
while working with their data!

There are, however, many fundamental differences in how humans/programs interpret and use text in source files vs.
numerical data which raise many questions Hangar needs to uniquely solve:

• How do we connect some piece of “Data” with a meaning in the real world?

• How do we diff and merge large collections of data samples?

• How can we resolve conflicts?

• How do we make data access (reading and writing) convenient for both user-driven exploratory analyses and
high performance production systems operating without supervision?

• How can we enable people to work on huge datasets in a local (laptop grade) development environment?

We will show how Hangar solves these questions in a high-level guide below. For a deep dive into the Hangar internals,
we invite you to check out the Hangar Under The Hood page.

4.4.3 How Hangar Thinks About Data

Abstraction 0: What is a Repository?

A “Repository” consists of an historically ordered mapping of “Commits” over time by various “Committers” across
any number of “Branches”. Though there are many conceptual similarities in what a Git repo and a Hangar Repository
achieve, Hangar is designed with the express purpose of dealing with numeric data. As such, when you read/write
to/from a Repository, the main way of interaction with information will be through (an arbitrary number of) Columns
in each Commit. A simple key/value store is also included to store metadata, but as it is a minor point is will largely
be ignored for the rest of this post.

4.4. Hangar Core Concepts 13

https://git-scm.org

Hangar, Release 0.5.2

History exists at the Repository level, Information exists at the Commit level.

Abstraction 1: What is a Dataset?

Let’s get philosophical and talk about what a “Dataset” is. The word “Dataset” invokes some meaning to humans; a
dataset may have a canonical name (like “MNIST” or “CoCo”), it will have a source where it comes from, (ideally) it
has a purpose for some real-world task, it will have people who build, aggregate, and nurture it, and most importantly
a Dataset always contains pieces of some type of information type which describes “something”.

It’s an abstract definition, but it is only us, the humans behind the machine, which associate “Data” with some meaning
in the real world; it is in the same vein which we associate a group of Data in a “Dataset” with some real world meaning.

Our first abstraction is therefore the “Dataset”: a collection of (potentially groups of) data pieces observing a common
form among instances which act to describe something meaningful. To describe some phenomenon, a dataset may
require multiple pieces of information, each of a particular format, for each instance/sample recorded in the dataset.

For Example

a Hospital will typically have a Dataset containing all of the CT scans performed over some period of
time. A single CT scan is an instance, a single sample; however, once many are grouped together they
form a Dataset. To expand on this simple view we realize that each CT scan consists of hundreds of pieces
of information:

• Some large numeric array (the image data).

• Some smaller numeric tuples (describing image spacing, dimension scale, capture time, ma-
chine parameters, etc).

• Many pieces of string data (the patient name, doctor name, scan type, results found, etc).

When thinking about the group of CT scans in aggregate, we realize that though a single scan contains many disparate
pieces of information stuck together, when thinking about the aggregation of every scan in the group, most of (if not
all) of the same information fields are duplicated within each samples.

A single scan is a bunch of disparate information stuck together, many of those put together makes a Dataset, but
looking down from the top, we identify pattern of common fields across all items. We call these groupings of similar
typed information: Columns.

Abstraction 2: What Makes up a Column?

A Dataset is made of one or more Columns (and optionally some Metadata), with each item placed in some
Column belonging to and making up an individual Sample. It is important to remember that all data needed to fully
describe a single sample in a Dataset may consist of information spread across any number of Columns. To
define a Column in Hangar, we only need to provide:

• a name

• a type

• a shape

The individual pieces of information (Data) which fully describe some phenomenon via an aggregate mapping ac-
cess across any number of “Columns” are both individually and collectively referred to as Samples in the Hangar
vernacular. According to the specification above, all samples contained in a Column must be numeric arrays with
each having:

1) Same data type (standard numpy data types are supported).

2) A shape with each dimension size <= the shape (max shape) set in the column specification (more on this
later).

14 Chapter 4. Development

Hangar, Release 0.5.2

Additionally, samples in a column can either be named, or unnamed (depending on how you interpret what the
information contained in the column actually represents).

Effective use of Hangar relies on having an understanding of what exactly a "Sample" is in a particular Column.
The most effective way to find out is to ask: “What is the smallest piece of data which has a useful meaning to
‘me’ (or ‘my’ downstream processes”). In the MNIST column, this would be a single digit image (a 28x28 array);
for a medical column it might be an entire (512x320x320) MRI volume scan for a particular patient; while for the
NASDAQ Stock Ticker it might be an hours worth of price data points (or less, or more!) The point is that when you
think about what a ‘‘sample‘‘ is, it should typically be the smallest atomic unit of useful information.

Abstraction 3: What is Data?

From this point forward, when we talk about “Data” we are actually talking about n-dimensional arrays of
numeric information. To Hangar, “Data” is just a collection of numbers being passed into and out of it. Data
does not have a file type, it does not have a file-extension, it does not mean anything to Hangar itself - it is just numbers.
This theory of “Data” is nearly as simple as it gets, and this simplicity is what enables us to be unconstrained as we
build abstractions and utilities to operate on it.

Summary

A Dataset is thought of as containing Samples, but is actually defined by
Columns, which store parts of fully defined Samples in structures common
across the full aggregation of Dataset Samples.

This can essentially be represented as a key -> tensor mapping, which can
(optionally) be Sparse depending on usage patterns

Dataset
|

| | | |

Column 1 Column 2 Column 3 Column 4
| | | |

--
image | filename | label | annotation |

--
S1 | S1 | | S1 |
S2 | S2 | S2 | S2 |
S3 | S3 | S3 | |
S4 | S4 | | |

More techincally, a Dataset is just a view over the columns that gives you
sample tuples based on the cross product of keys and columns. Hangar doesn't
store or track the data set, just the underlying columns.

S1 = (image[S1], filename[S1], annotation[S1])
S2 = (image[S2], filename[S2], label[S2], annotation[S2])
S3 = (image[S3], filename[S3], label[S3])
S4 = (image[S4], filename[S4])

Note: The technical crowd among the readers should note:

• Hangar preserves all sample data bit-exactly.

• Dense arrays are fully supported, Sparse array support is currently under development and will be released soon.

4.4. Hangar Core Concepts 15

Hangar, Release 0.5.2

• Integrity checks are built in by default (explained in more detail in Hangar Under The Hood.) using crypto-
graphically secure algorithms.

• Hangar is very much a young project, until penetration tests and security reviews are performed, we will refrain
from stating that Hangar is fully “cryptographically secure”. Security experts are welcome to contact us privately
at hangar.info@tensorwerk.com to disclose any security issues.

4.4.4 Implications of the Hangar Data Philosophy

The Domain-Specific File Format Problem

Though it may seem counterintuitive at first, there is an incredible amount of freedom (and power) that is gained when
“you” (the user) start to decouple some information container from the data which it actually holds. At the end of the
day, the algorithms and systems you use to produce insight from data are just mathematical operations; math does not
operate on a specific file type, math operates on numbers.

Human & Computational Cost

It seems strange that organizations & projects commonly rely on storing data on disk in some domain-specific - or
custom built - binary format (ie. a .jpg image, .nii neuroimaging informatics study, .cvs tabular data, etc.), and
just deal with the hassle of maintaining all the infrastructure around reading, writing, transforming, and preprocessing
these files into useable numerical data every time they want to interact with their Columns. Even disregarding the
computational cost/overhead of preprocessing & transforming the data on every read/write, these schemes require
significant amounts of human capital (developer time) to be spent on building, testing, and upkeep/maintenance; all
while adding significant complexity for users. Oh, and they also have a strangely high inclination to degenerate into
horrible complexity which essentially becomes “magic” after the original creators move on.

The Hangar system is quite different in this regards. First, we trust that you know what your data is and what it
should be best represented as. When writing to a Hangar repository, you process the data into n-dimensional arrays
once. Then when you retrieve it you are provided with the same array, in the same shape and datatype (unless you ask
for a particular subarray-slice), already initialized in memory and ready to compute on instantly.

High Performance From Simplicity

Because Hangar is designed to deal (almost exclusively) with numerical arrays, we are able to “stand on the shoulders
of giants” once again by utilizing many of the well validated, highly optimized, and community validated numerical
array data management utilities developed by the High Performance Computing community over the past few decades.

In a sense, the backend of Hangar serves two functions:

1) Bookkeeping: recording information about about columns, samples, commits, etc.

2) Data Storage: highly optimized interfaces which store and retrieve data from from disk through its backend
utility.

The details are explained much more thoroughly in Hangar Under The Hood.

Because Hangar only considers data to be numbers, the choice of backend to store data is (in a sense) completely
arbitrary so long as Data In == Data Out. This fact has massive implications for the system; instead of being
tied to a single backend (each of which will have significant performance tradeoffs for arrays of particular datatypes,
shapes, and access patterns), we simultaneously store different data pieces in the backend which is most suited to it.
A great deal of care has been taken to optimize parameters in the backend interface which affects performance and
compression of data samples.

16 Chapter 4. Development

mailto:hangar.info@tensorwerk.com

Hangar, Release 0.5.2

The choice of backend to store a piece of data is selected automatically from heuristics based on the column specifica-
tion, system details, and context of the storage service internal to Hangar. As a user, this is completely transparent
to you in all steps of interacting with the repository. It does not require (or even accept) user specified configuration.

At the time of writing, Hangar has the following backends implemented (with plans to potentially support more as
needs arise):

1) HDF5

2) Memmapped Arrays

3) TileDb (in development)

Open Source Software Style Collaboration in Dataset Curation

Specialized Domain Knowledge is A Scarce Resource

A common side effect of the The Domain-Specific File Format Problem is that anyone who wants to work with an
organization’s/project’s data needs to not only have some domain expertise (so they can do useful things with the
data), but they also need to have a non-trivial understanding of the projects dataset, file format, and access conventions
/ transformation pipelines. In a world where highly specialized talent is already scarce, this phenomenon shrinks the
pool of available collaborators dramatically.

Given this situation, it’s understandable why when most organizations spend massive amounts of money and time to
build a team, collect & annotate data, and build an infrastructure around that information, they hold it for their private
use with little regards for how the world could use it together. Businesses rely on proprietary information to stay ahead
of their competitors, and because this information is so difficult (and expensive) to generate, it’s completely reasonable
that they should be the ones to benefit from all that work.

A Thought Experiment

Imagine that Git and GitHub didn’t take over the world. Imagine that the Diff and Patch Unix tools
never existed. Instead, imagine we were to live in a world where every software project had very different
version control systems (largely homeade by non VCS experts, & not validated by a community over
many years of use). Even worse, most of these tools don’t allow users to easily branch, make changes,
and automatically merge them back. It shouldn’t be difficult to imagine how dramatically such a world
would contrast to ours today. Open source software as we know it would hardly exist, and any efforts
would probably be massively fragmented across the web (if there would even be a ‘web’ that we would
recognize in this strange world).

Without a way to collaborate in the open, open source software would largely not exist, and we would all
be worse off for it.

Doesn’t this hypothetical sound quite a bit like the state of open source data collaboration in todays world?

The impetus for developing a tool like Hangar is the belief that if it is simple for anyone with domain knowledge to
collaboratively curate columns containing information they care about, then they will.* Open source software devel-
opment benefits everyone, we believe open source column curation can do the same.

How To Overcome The “Size” Problem

Even if the greatest tool imaginable existed to version, branch, and merge columns, it would face one massive problem
which if it didn’t solve would kill the project: The size of data can very easily exceeds what can fit on (most) contribu-
tors laptops or personal workstations. This section explains how Hangar can handle working with columns which are
prohibitively large to download or store on a single machine.

4.4. Hangar Core Concepts 17

https://www.hdfgroup.org/solutions/hdf5/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html
https://tiledb.io/

Hangar, Release 0.5.2

As mentioned in High Performance From Simplicity, under the hood Hangar deals with “Data” and “Bookkeeping”
completely separately. We’ve previously covered what exactly we mean by Data in How Hangar Thinks About Data,
so we’ll briefly cover the second major component of Hangar here. In short “Bookkeeping” describes everything about
the repository. By everything, we do mean that the Bookkeeping records describe everything: all commits, parents,
branches, columns, samples, data descriptors, schemas, commit message, etc. Though complete, these records are
fairly small (tens of MB in size for decently sized repositories with decent history), and are highly compressed for fast
transfer between a Hangar client/server.

A brief technical interlude

There is one very important (and rather complex) property which gives Hangar Bookeeping massive
power: Existence of some data piece is always known to Hangar and stored immutably once com-
mitted. However, the access pattern, backend, and locating information for this data piece may (and
over time, will) be unique in every hangar repository instance.

Though the details of how this works is well beyond the scope of this document, the following example
may provide some insight into the implications of this property:

If you clone some hangar repository, Bookeeping says that “some number of data pieces
exist” and they should retrieved from the server. However, the bookeeping records transfered
in a fetch / push / clone operation do not include information about where that piece of
data existed on the client (or server) computer. Two synced repositories can use completely
different backends to store the data, in completly different locations, and it does not matter -
Hangar only guarantees that when collaborators ask for a data sample in some checkout, that
they will be provided with identical arrays, not that they will come from the same place or be
stored in the same way. Only when data is actually retrieved the “locating information” is set
for that repository instance.

Because Hangar makes no assumptions about how/where it should retrieve some piece of data, or even an assumption
that it exists on the local machine, and because records are small and completely describe history, once a machine has
the Bookkeeping, it can decide what data it actually wants to materialize on it’s local disk! These partial fetch
/ partial clone operations can materialize any desired data, whether it be for a few records at the head branch,
for all data in a commit, or for the entire historical data. A future release will even include the ability to stream data
directly to a Hangar checkout and materialize the data in memory without having to save it to disk at all!

More importantly: Since Bookkeeping describes all history, merging can be performed between branches which
may contain partial (or even no) actual data. Aka you don’t need data on disk to merge changes into it. It’s an
odd concept which will be explained more in depth in the future.

..note

To try this out for yourself, please refer to the the API Docs
(:ref:`ref-api`) on working with Remotes, especially the ``fetch()`` and
``fetch-data()`` methods. Otherwise look for through our tutorials &
examples for more practical info!

What Does it Mean to “Merge” Data?

We’ll start this section, once again, with a comparison to source code version control systems. When dealing with
source code text, merging is performed in order to take a set of changes made to a document, and logically insert the
changes into some other version of the document. The goal is to generate a new version of the document with all
changes made to it in a fashion which conforms to the “change author’s” intentions. Simply put: the new version is
valid and what is expected by the authors.

This concept of what it means to merge text does not generally map well to changes made in a column we’ll explore
why through this section, but look back to the philosophy of Data outlined in How Hangar Thinks About Data for

18 Chapter 4. Development

Hangar, Release 0.5.2

inspiration as we begin. Remember, in the Hangar design a Sample is the smallest array which contains useful in-
formation. As any smaller selection of the sample array is meaningless, Hangar does not support subarray-slicing or
per-index updates when writing data. (subarray-slice queries are permitted for read operations, though regular use is
discouraged and may indicate that your samples are larger than they should be).

Diffing Hangar Checkouts

To understand merge logic, we first need to understand diffing, and the actors operations which can occur.

Addition An operation which creates a column, sample, or some metadata which did not previously exist
in the relevant branch history.

Removal An operation which removes some column, a sample, or some metadata which existed in the
parent of the commit under consideration. (Note: removing a column also removes all samples
contained in it).

Mutation An operation which sets: data to a sample, the value of some metadata key, or a column
schema, to a different value than what it had previously been created with (Note: a column schema
mutation is observed when a column is removed, and a new column with the same name is created
with a different dtype/shape, all in the same commit).

Merging Changes

Merging diffs solely consisting of additions and removals between branches is trivial, and performs exactly as one
would expect from a text diff. Where things diverge from text is when we consider how we will merge diffs containing
mutations.

Say we have some sample in commit A, a branch is created, the sample is updated, and commit C is created. At the
same time, someone else checks out branch whose HEAD is at commit A, and commits a change to the sample as
well. If these changes are identical, they are compatible, but what if they are not? In the following example, we diff
and merge each element of the sample array like we would text:

Merge ??
commit A commit B Does combining mean anything?

[[0, 1, 2], [[0, 1, 2], [[1, 1, 1],
[0, 1, 2], -----> [2, 2, 2], ------------> [2, 2, 2],
[0, 1, 2]] [3, 3, 3]] / [3, 3, 3]]

\ /
\ commit C /
\ /
\ [[1, 1, 1], /
-------> [0, 1, 2],

[0, 1, 2]]

We see that a result can be generated, and can agree if this was a piece of text, the result would be correct. Don’t
be fooled, this is an abomination and utterly wrong/meaningless. Remember we said earlier "the result of
a merge should conform to the intentions of each author". This merge result conforms to
neither author’s intention. The value of an array element is not isolated, every value affects how the entire sample
is understood. The values at Commit B or commit C may be fine on their own, but if two samples are mutated
independently with non-identical updates, it is a conflict that needs to be handled by the authors.

This is the actual behavior of Hangar.

4.4. Hangar Core Concepts 19

Hangar, Release 0.5.2

commit A commit B

[[0, 1, 2], [[0, 1, 2],
[0, 1, 2], -----> [2, 2, 2], ----- MERGE CONFLICT
[0, 1, 2]] [3, 3, 3]] /

\ /
\ commit C /
\ /
\ [[1, 1, 1], /
-------> [0, 1, 2],

[0, 1, 2]]

When a conflict is detected, the merge author must either pick a sample from one of the commits or make changes in
one of the branches such that the conflicting sample values are resolved.

How Are Conflicts Detected?

Any merge conflicts can be identified and addressed ahead of running a merge command by using the built in diff
tools. When diffing commits, Hangar will provide a list of conflicts which it identifies. In general these fall into 4
categories:

1) Additions in both branches which created new keys (samples / columns / metadata) with non-compatible values.
For samples & metadata, the hash of the data is compared, for columns, the schema specification is checked for
compatibility in a method custom to the internal workings of Hangar.

2) Removal in Master Commit / Branch & Mutation in Dev Commit / Branch. Applies for sam-
ples, columns, and metadata identically.

3) Mutation in Dev Commit / Branch & Removal in Master Commit / Branch. Applies for sam-
ples, columns, and metadata identically.

4) Mutations on keys both branches to non-compatible values. For samples & metadata, the hash of the data is
compared, for columns, the schema specification is checked for compatibility in a method custom to the internal
workings of Hangar.

4.4.5 What’s Next?

• Get started using Hangar today: Installation.

• Read the tutorials: Hangar Tutorial.

• Dive into the details: Hangar Under The Hood.

4.5 Python API

This is the python API for the Hangar project.

4.5.1 Repository

class Repository(path: Union[str, pathlib.Path], exists: bool = True)
Launching point for all user operations in a Hangar repository.

20 Chapter 4. Development

Hangar, Release 0.5.2

All interaction, including the ability to initialize a repo, checkout a commit (for either reading or writing), create
a branch, merge branches, or generally view the contents or state of the local repository starts here. Just provide
this class instance with a path to an existing Hangar repository, or to a directory one should be initialized, and
all required data for starting your work on the repo will automatically be populated.

>>> from hangar import Repository
>>> repo = Repository('foo/path/to/dir')

Parameters

• path (Union[str, os.PathLike]) – local directory path where the Hangar reposi-
tory exists (or initialized)

• exists (bool, optional) – True if a Hangar repository should exist at the given
directory path. Should no Hangar repository exists at that location, a UserWarning will be
raised indicating that the init() method needs to be called.

False if the provided path does not need to (but optionally can) contain a Hangar repository.
if a Hangar repository does not exist at that path, the usual UserWarning will be suppressed.

In both cases, the path must exist and the user must have sufficient OS permissions to write
to that location. Default = True

checkout(write: bool = False, *, branch: str = ”, commit: str = ”) →
Union[hangar.checkout.ReaderCheckout, hangar.checkout.WriterCheckout]

Checkout the repo at some point in time in either read or write mode.

Only one writer instance can exist at a time. Write enabled checkout must must create a staging area from
the HEAD commit of a branch. On the contrary, any number of reader checkouts can exist at the same time
and can specify either a branch name or a commit hash.

Parameters

• write (bool, optional) – Specify if the checkout is write capable, defaults to False

• branch (str, optional) – name of the branch to checkout. This utilizes the state of
the repo as it existed at the branch HEAD commit when this checkout object was instanti-
ated, defaults to ‘’

• commit (str, optional) – specific hash of a commit to use for the checkout (instead
of a branch HEAD commit). This argument takes precedent over a branch name parameter
if it is set. Note: this only will be used in non-writeable checkouts, defaults to ‘’

Raises

• ValueError – If the value of write argument is not boolean

• ValueError – If commit argument is set to any value when write=True. Only
branch argument is allowed.

Returns Checkout object which can be used to interact with the repository data

Return type Union[ReaderCheckout, WriterCheckout]

clone(user_name: str, user_email: str, remote_address: str, *, remove_old: bool = False)→ str
Download a remote repository to the local disk.

The clone method implemented here is very similar to a git clone operation. This method will pull all
commit records, history, and data which are parents of the remote’s master branch head commit. If a
Repository exists at the specified directory, the operation will fail.

Parameters

4.5. Python API 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Hangar, Release 0.5.2

• user_name (str) – Name of the person who will make commits to the repository. This
information is recorded permanently in the commit records.

• user_email (str) – Email address of the repository user. This information is recorded
permanently in any commits created.

• remote_address (str) – location where the hangar.remote.server.
HangarServer process is running and accessible by the clone user.

• remove_old (bool, optional, kwarg only) – DANGER! DEVELOPMENT
USE ONLY! If enabled, a hangar.repository.Repository existing on disk at
the same path as the requested clone location will be completely removed and replaced
with the newly cloned repo. (the default is False, which will not modify any contents on
disk and which will refuse to create a repository at a given location if one already exists
there.)

Returns Name of the master branch for the newly cloned repository.

Return type str

create_branch(name: str, base_commit: str = None)→ hangar.records.heads.BranchHead
create a branch with the provided name from a certain commit.

If no base commit hash is specified, the current writer branch HEAD commit is used as the base_commit
hash for the branch. Note that creating a branch does not actually create a checkout object for interaction
with the data. to interact you must use the repository checkout method to properly initialize a read (or
write) enabled checkout object.

>>> from hangar import Repository
>>> repo = Repository('foo/path/to/dir')

>>> repo.create_branch('testbranch')
BranchHead(name='testbranch', digest='b66b...a8cc')

>>> repo.list_branches()
['master', 'testbranch']

>>> co = repo.checkout(write=True, branch='testbranch')
>>> # add data ...
>>> newDigest = co.commit('added some stuff')

>>> repo.create_branch('new-changes', base_commit=newDigest)
BranchHead(name='new-changes', digest='35kd...3254')

>>> repo.list_branches()
['master', 'new-changes', 'testbranch']

Parameters

• name (str) – name to assign to the new branch

• base_commit (str, optional) – commit hash to start the branch root at. if not
specified, the writer branch HEAD commit at the time of execution will be used, defaults
to None

Returns NamedTuple[str, str] with fields for name and digest of the branch created (if the
operation was successful)

Return type BranchHead

Raises

• ValueError – If the branch name provided contains characters outside of alpha-numeric
ascii characters and “.”, “_”, “-” (no whitespace), or is > 64 characters.

22 Chapter 4. Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Hangar, Release 0.5.2

• ValueError – If the branch already exists.

• RuntimeError – If the repository does not have at-least one commit on the “default”
(ie. master) branch.

diff(master: str, dev: str)→ hangar.diff.DiffAndConflicts
Calculate diff between master and dev branch/commits.

Diff is calculated as if we are to merge “dev” into “master”

Parameters

• master (str) – branch name or commit hash digest to use as the “master” which changes
made in “dev” are compared to.

• dev (str) – branch name or commit hash digest to use as the “dev” (ie. “feature”) branch
which changes have been made to which are to be compared to the contents of “master”.

Returns Standard output diff structure.

Return type DiffAndConflicts

force_release_writer_lock()→ bool
Force release the lock left behind by an unclosed writer-checkout

Warning: NEVER USE THIS METHOD IF WRITER PROCESS IS CURRENTLY ACTIVE. At the
time of writing, the implications of improper/malicious use of this are not understood, and there is a a
risk of of undefined behavior or (potentially) data corruption.

At the moment, the responsibility to close a write-enabled checkout is placed entirely on the user. If
the close() method is not called before the program terminates, a new checkout with write=True will
fail. The lock can only be released via a call to this method.

Note: This entire mechanism is subject to review/replacement in the future.

Returns if the operation was successful.

Return type bool

init(user_name: str, user_email: str, *, remove_old: bool = False)→ str
Initialize a Hangar repository at the specified directory path.

This function must be called before a checkout can be performed.

Parameters

• user_name (str) – Name of the repository user account.

• user_email (str) – Email address of the repository user account.

• remove_old (bool, kwarg-only) – DEVELOPER USE ONLY – remove and
reinitialize a Hangar repository at the given path, Default = False

Returns the full directory path where the Hangar repository was initialized on disk.

Return type str

initialized
Check if the repository has been initialized or not

4.5. Python API 23

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Hangar, Release 0.5.2

Returns True if repository has been initialized.

Return type bool

list_branches()→ List[str]
list all branch names created in the repository.

Returns the branch names recorded in the repository

Return type List[str]

log(branch: str = None, commit: str = None, *, return_contents: bool = False, show_time: bool =
False, show_user: bool = False)→ Optional[dict]
Displays a pretty printed commit log graph to the terminal.

Note: For programatic access, the return_contents value can be set to true which will retrieve relevant
commit specifications as dictionary elements.

Parameters

• branch (str, optional) – The name of the branch to start the log process from.
(Default value = None)

• commit (str, optional) – The commit hash to start the log process from. (Default
value = None)

• return_contents (bool, optional, kwarg only) – If true, return the com-
mit graph specifications in a dictionary suitable for programatic access/evaluation.

• show_time (bool, optional, kwarg only) – If true and return_contents is
False, show the time of each commit on the printed log graph

• show_user (bool, optional, kwarg only) – If true and return_contents is
False, show the committer of each commit on the printed log graph

Returns Dict containing the commit ancestor graph, and all specifications.

Return type Optional[dict]

merge(message: str, master_branch: str, dev_branch: str)→ str
Perform a merge of the changes made on two branches.

Parameters

• message (str) – Commit message to use for this merge.

• master_branch (str) – name of the master branch to merge into

• dev_branch (str) – name of the dev/feature branch to merge

Returns Hash of the commit which is written if possible.

Return type str

path
Return the path to the repository on disk, read-only attribute

Returns path to the specified repository, not including .hangar directory

Return type str

24 Chapter 4. Development

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Hangar, Release 0.5.2

remote
Accessor to the methods controlling remote interactions.

See also:

Remotes for available methods of this property

Returns Accessor object methods for controlling remote interactions.

Return type Remotes

remove_branch(name: str, *, force_delete: bool = False)→ hangar.records.heads.BranchHead
Permanently delete a branch pointer from the repository history.

Since a branch (by definition) is the name associated with the HEAD commit of a historical path, the
default behavior of this method is to throw an exception (no-op) should the HEAD not be referenced as
an ancestor (or at least as a twin) of a separate branch which is currently ALIVE. If referenced in another
branch’s history, we are assured that all changes have been merged and recorded, and that this pointer can
be safely deleted without risk of damage to historical provenance or (eventual) loss to garbage collection.

>>> from hangar import Repository
>>> repo = Repository('foo/path/to/dir')

>>> repo.create_branch('first-testbranch')
BranchHead(name='first-testbranch', digest='9785...56da')
>>> repo.create_branch('second-testbranch')
BranchHead(name='second-testbranch', digest='9785...56da')
>>> repo.list_branches()
['master', 'first-testbranch', 'second-testbranch']
>>> # Make a commit to advance a branch
>>> co = repo.checkout(write=True, branch='first-testbranch')
>>> # add data ...
>>> co.commit('added some stuff')
'3l253la5hna3k3a553256nak35hq5q534kq35532'
>>> co.close()

>>> repo.remove_branch('second-testbranch')
BranchHead(name='second-testbranch', digest='9785...56da')

A user may manually specify to delete an un-merged branch, in which case the force_delete keyword-
only argument should be set to True.

>>> # check out master and try to remove 'first-testbranch'
>>> co = repo.checkout(write=True, branch='master')
>>> co.close()

>>> repo.remove_branch('first-testbranch')
Traceback (most recent call last):

...
RuntimeError: ("The branch first-testbranch is not fully merged. "
"If you are sure you want to delete it, re-run with "
"force-remove parameter set.")
>>> # Now set the `force_delete` parameter
>>> repo.remove_branch('first-testbranch', force_delete=True)
BranchHead(name='first-testbranch', digest='9785...56da')

It is important to note that while this method will handle all safety checks, argument validation, and
performs the operation to permanently delete a branch name/digest pointer, **no commit refs along the

4.5. Python API 25

Hangar, Release 0.5.2

history will be deleted from the Hangar database*.* Most of the history contains commit refs which
must be safe in other branch histories, and recent commits may have been used as the base for some new
history. As such, even if some of the latest commits leading up to a deleted branch HEAD are orphaned
(unreachable), the records (and all data added in those commits) will remain on the disk.

In the future, we intend to implement a garbage collector which will remove orphan commits which have
not been modified for some set amount of time (probably on the order of a few months), but this is not
implemented at the moment.

Should an accidental forced branch deletion occur, it is possible to recover and create a new branch head
pointing to the same commit. If the commit digest of the removed branch HEAD is known, its as simple as
specifying a name and the base_digest in the normal create_branch() method. If the digest is
unknown, it will be a bit more work, but some of the developer facing introspection tools / routines could
be used to either manually or (with minimal effort) programmatically find the orphan commit candidates.
If you find yourself having accidentally deleted a branch, and must get it back, please reach out on the
Github Issues page. We’ll gladly explain more in depth and walk you through the process in any way we
can help!

Parameters

• name (str) – name of the branch which should be deleted. This branch must exist,
and cannot refer to a remote tracked branch (ie. origin/devbranch), please see exception
descriptions for other parameters determining validity of argument

• force_delete (bool, optional) – If True, remove the branch pointer even if the
changes are un-merged in other branch histories. May result in orphaned commits which
may be time-consuming to recover if needed, by default False

Returns NamedTuple[str, str] with fields for name and digest of the branch pointer deleted.

Return type BranchHead

Raises

• ValueError – If a branch with the provided name does not exist locally

• PermissionError – If removal of the branch would result in a repository with zero
local branches.

• PermissionError – If a write enabled checkout is holding the writer-lock at time of
this call.

• PermissionError – If the branch to be removed was the last used in a write-enabled
checkout, and whose contents form the base of the staging area.

• RuntimeError – If the branch has not been fully merged into other branch histories,
and force_delete option is not True.

size_human
Disk space used by the repository returned in human readable string.

>>> repo.size_human
'1.23 GB'
>>> print(type(repo.size_human))
<class 'str'>

Returns disk space used by the repository formated in human readable text.

Return type str

26 Chapter 4. Development

https://github.com/tensorwerk/hangar-py/issues
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#PermissionError
https://docs.python.org/3/library/exceptions.html#PermissionError
https://docs.python.org/3/library/exceptions.html#PermissionError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str

Hangar, Release 0.5.2

size_nbytes
Disk space used by the repository returned in number of bytes.

>>> repo.size_nbytes
1234567890
>>> print(type(repo.size_nbytes))
<class 'int'>

Returns number of bytes used by the repository on disk.

Return type int

summary(*, branch: str = ”, commit: str = ”)→ None
Print a summary of the repository contents to the terminal

Parameters

• branch (str, optional) – A specific branch name whose head commit will be used
as the summary point (Default value = ‘’)

• commit (str, optional) – A specific commit hash which should be used as the
summary point. (Default value = ‘’)

verify_repo_integrity()→ bool
Verify the integrity of the repository data on disk.

Runs a full cryptographic verification of repository contents in order to ensure the integrity of all data and
history recorded on disk.

Note: This proof may take a significant amount of time to run for repositories which:

1. store significant quantities of data on disk.

2. have a very large number of commits in their history.

As a brief explanation for why these are the driving factors behind processing time:

1. Every single piece of data in the repositories history must be read from disk, cryptographically hashed,
and compared to the expected value. There is no exception to this rule; regardless of when a piece
of data was added / removed from an column, or for how many (or how few) commits some sample
exists in. The integrity of the commit tree at any point after some piece of data is added to the repo
can only be validated if it - and all earlier data pieces - are proven to be intact and unchanged.

Note: This does not mean that the verification is repeatedly performed for every commit some piece
of data is stored in. Each data piece is read from disk and verified only once, regardless of how many
commits some piece of data is referenced in.

2. Each commit reference (defining names / contents of a commit) must be decompressed and parsed
into a usable data structure. We scan across all data digests referenced in the commit and ensure
that the corresponding data piece is known to hangar (and validated as unchanged). The commit
refs (along with the corresponding user records, message, and parent map), are then re-serialized and
cryptographically hashed for comparison to the expected value. While this process is fairly efficient
for a single commit, it must be repeated for each commit in the repository history, and may take a
non-trivial amount of time for repositories with thousands of commits.

While the two points above are the most time consuming operations, there are many more checks which
are performed alongside them as part of the full verification run.

4.5. Python API 27

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Hangar, Release 0.5.2

Returns True if integrity verification is successful, otherwise False; in this case, a message
describing the offending component will be printed to stdout.

Return type bool

version
Find the version of Hangar software the repository is written with

Returns semantic version of major, minor, micro version of repo software version.

Return type str

writer_lock_held
Check if the writer lock is currently marked as held. Read-only attribute.

Returns True is writer-lock is held, False if writer-lock is free.

Return type bool

class Remotes
Class which governs access to remote interactor objects.

Note: The remote-server implementation is under heavy development, and is likely to undergo changes in the
Future. While we intend to ensure compatability between software versions of Hangar repositories written to
disk, the API is likely to change. Please follow our process at: https://www.github.com/tensorwerk/hangar-py

add(name: str, address: str)→ hangar.remotes.RemoteInfo
Add a remote to the repository accessible by name at address.

Parameters

• name (str) – the name which should be used to refer to the remote server (ie: ‘origin’)

• address (str) – the IP:PORT where the hangar server is running

Returns Two-tuple containing (name, address) of the remote added to the client’s server list.

Return type RemoteInfo

Raises

• ValueError – If provided name contains any non ascii letter characters characters, or if
the string is longer than 64 characters long.

• ValueError – If a remote with the provided name is already listed on this client, No-
Op. In order to update a remote server address, it must be removed and then re-added with
the desired address.

fetch(remote: str, branch: str)→ str
Retrieve new commits made on a remote repository branch.

This is semantically identical to a git fetch command. Any new commits along the branch will be retrieved,
but placed on an isolated branch to the local copy (ie. remote_name/branch_name). In order to unify
histories, simply merge the remote branch into the local branch.

Parameters

• remote (str) – name of the remote repository to fetch from (ie. origin)

• branch (str) – name of the branch to fetch the commit references for.

Returns Name of the branch which stores the retrieved commits.

Return type str

28 Chapter 4. Development

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://www.github.com/tensorwerk/hangar-py
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Hangar, Release 0.5.2

fetch_data(remote: str, branch: str = None, commit: str = None, *, column_names: Op-
tional[Sequence[str]] = None, max_num_bytes: int = None, retrieve_all_history: bool
= False)→ List[str]

Retrieve the data for some commit which exists in a partial state.

Parameters

• remote (str) – name of the remote to pull the data from

• branch (str, optional) – The name of a branch whose HEAD will be used as the
data fetch point. If None, commit argument expected, by default None

• commit (str, optional) – Commit hash to retrieve data for, If None, branch ar-
gument expected, by default None

• column_names (Optional[Sequence[str]]) – Names of the columns which
should be retrieved for the particular commits, any columns not named will not have their
data fetched from the server. Default behavior is to retrieve all columns

• max_num_bytes (Optional[int]) – If you wish to limit the amount of data sent to
the local machine, set a max_num_bytes parameter. This will retrieve only this amount of
data from the server to be placed on the local disk. Default is to retrieve all data regardless
of how large.

• retrieve_all_history (Optional[bool]) – if data should be retrieved for all
history accessible by the parents of this commit HEAD. by default False

Returns commit hashes of the data which was returned.

Return type List[str]

Raises

• ValueError – if branch and commit args are set simultaneously.

• ValueError – if specified commit does not exist in the repository.

• ValueError – if branch name does not exist in the repository.

list_all()→ List[hangar.remotes.RemoteInfo]
List all remote names and addresses recorded in the client’s repository.

Returns list of namedtuple specifying (name, address) for each remote server recorded in
the client repo.

Return type List[RemoteInfo]

ping(name: str)→ float
Ping remote server and check the round trip time.

Parameters name (str) – name of the remote server to ping

Returns round trip time it took to ping the server after the connection was established and re-
quested client configuration was retrieved

Return type float

Raises

• KeyError – If no remote with the provided name is recorded.

• ConnectionError – If the remote server could not be reached.

push(remote: str, branch: str, *, username: str = ”, password: str = ”)→ str
push changes made on a local repository to a remote repository.

4.5. Python API 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ConnectionError

Hangar, Release 0.5.2

This method is semantically identical to a git push operation. Any local updates will be sent to the
remote repository.

Note: The current implementation is not capable of performing a force push operation. As such,
remote branches with diverged histories to the local repo must be retrieved, locally merged, then re-pushed.
This feature will be added in the near future.

Parameters

• remote (str) – name of the remote repository to make the push on.

• branch (str) – Name of the branch to push to the remote. If the branch name does not
exist on the remote, the it will be created

• username (str, optional, kwarg-only) – credentials to use for authentication
if repository push restrictions are enabled, by default ‘’.

• password (str, optional, kwarg-only) – credentials to use for authentication
if repository push restrictions are enabled, by default ‘’.

Returns Name of the branch which was pushed

Return type str

remove(name: str)→ hangar.remotes.RemoteInfo
Remove a remote repository from the branch records

Parameters name (str) – name of the remote to remove the reference to

Raises KeyError – If a remote with the provided name does not exist

Returns The channel address which was removed at the given remote name

Return type str

4.5.2 Write Enabled Checkout

Checkout

class WriterCheckout
Checkout the repository at the head of a given branch for writing.

This is the entry point for all writing operations to the repository, the writer class records all interactions in a
special "staging" area, which is based off the state of the repository as it existed at the HEAD commit of a
branch.

>>> co = repo.checkout(write=True)
>>> co.branch_name
'master'
>>> co.commit_hash
'masterheadcommithash'
>>> co.close()

At the moment, only one instance of this class can write data to the staging area at a time. After the desired
operations have been completed, it is crucial to call close() to release the writer lock. In addition, after any
changes have been made to the staging area, the branch HEAD cannot be changed. In order to checkout another
branch HEAD for writing, you must either commit() the changes, or perform a hard-reset of the staging area
to the last commit via reset_staging_area().

30 Chapter 4. Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str

Hangar, Release 0.5.2

In order to reduce the chance that the python interpreter is shut down without calling close(), which releases
the writer lock - a common mistake during ipython / jupyter sessions - an atexit hook is registered to close().
If properly closed by the user, the hook is unregistered after completion with no ill effects. So long as a the
process is NOT terminated via non-python SIGKILL, fatal internal python error, or or special os exit methods,
cleanup will occur on interpreter shutdown and the writer lock will be released. If a non-handled termination
method does occur, the force_release_writer_lock() method must be called manually when a new
python process wishes to open the writer checkout.

__contains__(key)
Determine if some column name (key) exists in the checkout.

__getitem__(index)
Dictionary style access to columns and samples

Checkout object can be thought of as a “dataset” (“dset”) mapping a view of samples across columns.

>>> dset = repo.checkout(branch='master')
>>>
Get an column contained in the checkout.
>>> dset['foo']
ColumnDataReader
>>>
Get a specific sample from ``'foo'`` (returns a single array)
>>> dset['foo', '1']
np.array([1])
>>>
Get multiple samples from ``'foo'`` (returns a list of arrays, in order
of input keys)
>>> dset[['foo', '1'], ['foo', '2'], ['foo', '324']]
[np.array([1]), np.ndarray([2]), np.ndarray([324])]
>>>
Get sample from multiple columns, column/data returned is ordered
in same manner as input of func.
>>> dset[['foo', '1'], ['bar', '1'], ['baz', '1']]
[np.array([1]), np.ndarray([1, 1]), np.ndarray([1, 1, 1])]
>>>
Get multiple samples from multiple columns >>> keys = [(col,
→˓str(samp)) for samp in range(2) for col in ['foo', 'bar']]
>>> keys
[('foo', '0'), ('bar', '0'), ('foo', '1'), ('bar', '1')]
>>> dset[keys]
[np.array([1]), np.array([1, 1]), np.array([2]), np.array([2, 2])]

Arbitrary column layouts are supported by simply adding additional members to the keys for each piece
of data. For example, getting data from a column with a nested layout:

>>> dset['nested_col', 'sample_1', 'subsample_0']
np.array([1, 0])
>>>
a sample accessor object can be retrieved at will...
>>> dset['nested_col', 'sample_1']
<class 'FlatSubsampleReader'>(column_name='nested_col', sample_name='sample_1
→˓')
>>>
to get all subsamples in a nested sample use the Ellipsis operator
>>> dset['nested_col', 'sample_1', ...]
{'subsample_0': np.array([1, 0]),
'subsample_1': np.array([1, 1]),

(continues on next page)

4.5. Python API 31

https://docs.python.org/3/library/atexit.html

Hangar, Release 0.5.2

(continued from previous page)

...
'subsample_n': np.array([1, 255])}

Retrieval of data from different column types can be mixed and combined as desired. For example, re-
trieving data from both flat and nested columns simultaneously:

>>> dset[('nested_col', 'sample_1', '0'), ('foo', '0')]
[np.array([1, 0]), np.array([0])]
>>> dset[('nested_col', 'sample_1', ...), ('foo', '0')]
[{'subsample_0': np.array([1, 0]), 'subsample_1': np.array([1, 1])},
np.array([0])]

>>> dset[('foo', '0'), ('nested_col', 'sample_1')]
[np.array([0]),
<class 'FlatSubsampleReader'>(column_name='nested_col', sample_name='sample_1
→˓')]

If a column or data key does not exist, then this method will raise a KeyError. As an alternative, missing
keys can be gracefully handeled by calling get() instead. This method does not (by default) raise an
error if a key is missing. Instead, a (configurable) default value is simply inserted in it’s place.

>>> dset['foo', 'DOES_NOT_EXIST']

KeyError Traceback (most recent call last)
<ipython-input-40-731e6ea62fb8> in <module>
----> 1 res = co['foo', 'DOES_NOT_EXIST']
KeyError: 'DOES_NOT_EXIST'

Parameters index – column name, sample key(s) or sequence of list/tuple of column name,
sample keys(s) which should be retrieved in the operation.

Please see detailed explanation above for full explanation of accepted argument format /
result types.

Returns

• Columns – single column parameter, no samples specified

• Any – Single column specified, single sample key specified

• List[Any] – arbitrary columns, multiple samples array data for each sample is returned in
same order sample keys are received.

__iter__()
Iterate over column keys

__len__()
Returns number of columns in the checkout.

add_bytes_column(name: str, contains_subsamples: bool = False, *, backend: Optional[str] =
None, backend_options: Optional[dict] = None)

Initializes a bytes container column

Columns are created in order to store some arbitrary collection of data pieces. In this case, we store
bbytes data. Items need not be related to each-other in any direct capacity; the only criteria hangar
requires is that all pieces of data stored in the column have a compatible schema with each-other (more
on this below). Each piece of data is indexed by some key (either user defined or automatically generated
depending on the user’s preferences). Both single level stores (sample keys mapping to data on disk) and

32 Chapter 4. Development

https://docs.python.org/3/library/stdtypes.html#bytes

Hangar, Release 0.5.2

nested stores (where some sample key maps to an arbitrary number of subsamples, in turn each pointing
to some piece of store data on disk) are supported.

All data pieces within a column have the same data type. For bytes columns, there is no distinction
between 'variable_shape' and 'fixed_shape' schema types. Values are allowed to take on a
value of any size so long as the datatype and contents are valid for the schema definition.

Parameters

• name (str) – Name assigned to the column

• contains_subsamples (bool, optional) – True if the column column should
store data in a nested structure. In this scheme, a sample key is used to index an arbitrary
number of subsamples which map some (sub)key to a piece of data. If False, sample keys
map directly to a single piece of data; essentially acting as a single level key/value store.
By default, False.

• backend (Optional[str], optional) – ADVANCED USERS ONLY, backend
format code to use for column data. If None, automatically inferred and set based on data
shape and type. by default None

• backend_options (Optional[dict], optional) – ADVANCED USERS
ONLY, filter opts to apply to column data. If None, automatically inferred and set based
on data shape and type. by default None

Returns instance object of the initialized column.

Return type Columns

add_ndarray_column(name: str, shape: Union[int, tuple, None] = None, dtype: Op-
tional[numpy.dtype] = None, prototype: Optional[numpy.ndarray] = None,
variable_shape: bool = False, contains_subsamples: bool = False, *, back-
end: Optional[str] = None, backend_options: Optional[dict] = None)

Initializes a numpy.ndarray container column.

Columns are created in order to store some arbitrary collection of data pieces. In this case, we store
numpy.ndarray data. Items need not be related to each-other in any direct capacity; the only criteria
hangar requires is that all pieces of data stored in the column have a compatible schema with each-other
(more on this below). Each piece of data is indexed by some key (either user defined or automatically
generated depending on the user’s preferences). Both single level stores (sample keys mapping to data on
disk) and nested stores (where some sample key maps to an arbitrary number of subsamples, in turn each
pointing to some piece of store data on disk) are supported.

All data pieces within a column have the same data type and number of dimensions. The size of each
dimension can be either fixed (the default behavior) or variable per sample. For fixed dimension sizes, all
data pieces written to the column must have the same shape & size which was specified at the time the col-
umn column was initialized. Alternatively, variable sized columns can write data pieces with dimensions
of any size (up to a specified maximum).

Parameters

• name (str) – The name assigned to this column.

• shape (Optional[Union[int, Tuple[int]]]) – The shape of the data samples
which will be written in this column. This argument and the dtype argument are required
if a prototype is not provided, defaults to None.

• dtype (Optional[numpy.dtype]) – The datatype of this column. This argument and
the shape argument are required if a prototype is not provided., defaults to None.

4.5. Python API 33

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype

Hangar, Release 0.5.2

• prototype (Optional[numpy.ndarray]) – A sample array of correct datatype and
shape which will be used to initialize the column storage mechanisms. If this is provided,
the shape and dtype arguments must not be set, defaults to None.

• variable_shape (bool, optional) – If this is a variable sized column. If true,
a the maximum shape is set from the provided shape or prototype argument. Any
sample added to the column can then have dimension sizes <= to this initial specification
(so long as they have the same rank as what was specified) defaults to False.

• contains_subsamples (bool, optional) – True if the column column should
store data in a nested structure. In this scheme, a sample key is used to index an arbitrary
number of subsamples which map some (sub)key to some piece of data. If False, sample
keys map directly to a single piece of data; essentially acting as a single level key/value
store. By default, False.

• backend (Optional[str], optional) – ADVANCED USERS ONLY, backend
format code to use for column data. If None, automatically inferred and set based on data
shape and type. by default None

• backend_options (Optional[dict], optional) – ADVANCED USERS
ONLY, filter opts to apply to column data. If None, automatically inferred and set based
on data shape and type. by default None

Returns instance object of the initialized column.

Return type Columns

add_str_column(name: str, contains_subsamples: bool = False, *, backend: Optional[str] = None,
backend_options: Optional[dict] = None)

Initializes a str container column

Columns are created in order to store some arbitrary collection of data pieces. In this case, we store str
data. Items need not be related to each-other in any direct capacity; the only criteria hangar requires is that
all pieces of data stored in the column have a compatible schema with each-other (more on this below).
Each piece of data is indexed by some key (either user defined or automatically generated depending on
the user’s preferences). Both single level stores (sample keys mapping to data on disk) and nested stores
(where some sample key maps to an arbitrary number of subsamples, in turn each pointing to some piece
of store data on disk) are supported.

All data pieces within a column have the same data type. For str columns, there is no distinction between
'variable_shape' and 'fixed_shape' schema types. Values are allowed to take on a value of
any size so long as the datatype and contents are valid for the schema definition.

Parameters

• name (str) – Name assigned to the column

• contains_subsamples (bool, optional) – True if the column column should
store data in a nested structure. In this scheme, a sample key is used to index an arbitrary
number of subsamples which map some (sub)key to a piece of data. If False, sample keys
map directly to a single piece of data; essentially acting as a single level key/value store.
By default, False.

• backend (Optional[str], optional) – ADVANCED USERS ONLY, backend
format code to use for column data. If None, automatically inferred and set based on data
shape and type. by default None

• backend_options (Optional[dict], optional) – ADVANCED USERS
ONLY, filter opts to apply to column data. If None, automatically inferred and set based
on data shape and type. by default None

Returns instance object of the initialized column.

34 Chapter 4. Development

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Hangar, Release 0.5.2

Return type Columns

branch_name
Branch this write enabled checkout’s staging area was based on.

Returns name of the branch whose commit HEAD changes are staged from.

Return type str

close()→ None
Close all handles to the writer checkout and release the writer lock.

Failure to call this method after the writer checkout has been used will result in a lock being placed on the
repository which will not allow any writes until it has been manually cleared.

columns
Provides access to column interaction object.

Can be used to either return the columns accessor for all elements or a single column instance by using
dictionary style indexing.

>>> co = repo.checkout(write=True)
>>> cols = co.columns
>>> len(cols)
0
>>> fooCol = co.add_ndarray_column('foo', shape=(10, 10), dtype=np.uint8)
>>> len(co.columns)
1
>>> len(co)
1
>>> list(co.columns.keys())
['foo']
>>> list(co.keys())
['foo']
>>> fooCol = co.columns['foo']
>>> fooCol.dtype
np.fooDtype
>>> fooCol = cols.get('foo')
>>> fooCol.dtype
np.fooDtype
>>> 'foo' in co.columns
True
>>> 'bar' in co.columns
False

See also:

The class Columns contains all methods accessible by this property accessor

Returns the columns object which behaves exactly like a columns accessor class but which can
be invalidated when the writer lock is released.

Return type Columns

commit(commit_message: str)→ str
Commit the changes made in the staging area on the checkout branch.

Parameters commit_message (str, optional) – user proved message for a log of what
was changed in this commit. Should a fast forward commit be possible, this will NOT be
added to fast-forward HEAD.

Returns The commit hash of the new commit.

4.5. Python API 35

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Hangar, Release 0.5.2

Return type str

Raises RuntimeError – If no changes have been made in the staging area, no commit occurs.

commit_hash
Commit hash which the staging area of branch_name is based on.

Returns commit hash

Return type str

diff
Access the differ methods which are aware of any staged changes.

See also:

The class hangar.diff.WriterUserDiff contains all methods accessible by this property accessor

Returns weakref proxy to the differ object (and contained methods) which behaves exactly like
the differ class but which can be invalidated when the writer lock is released.

Return type WriterUserDiff

get(keys, default=None, except_missing=False)
View of sample data across columns gracefully handling missing sample keys.

Please see __getitem__() for full description. This method is identical with a single exception: if a
sample key is not present in an column, this method will plane a null None value in it’s return slot rather
than throwing a KeyError like the dict style access does.

Parameters

• keys – sequence of column name (and optionally) sample key(s) or sequence of list/tuple
of column name, sample keys(s) which should be retrieved in the operation.

Please see detailed explanation in __getitem__() for full explanation of accepted ar-
gument format / result types.

• default (Any, optional) – default value to insert in results for the case where some
column name / sample key is not found, and the except_missing parameter is set to False.

• except_missing (bool, optional) – If False, will not throw exceptions on miss-
ing sample key value. Will raise KeyError if True and missing key found.

Returns

• Columns – single column parameter, no samples specified

• Any – Single column specified, single sample key specified

• List[Any] – arbitrary columns, multiple samples array data for each sample is returned in
same order sample keys are received.

items()
Generator yielding tuple of (name, accessor object) of every column

keys()
Generator yielding the name (key) of every column

log(branch: str = None, commit: str = None, *, return_contents: bool = False, show_time: bool =
False, show_user: bool = False)→ Optional[dict]
Displays a pretty printed commit log graph to the terminal.

36 Chapter 4. Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Hangar, Release 0.5.2

Note: For programatic access, the return_contents value can be set to true which will retrieve relevant
commit specifications as dictionary elements.

if Neither branch nor commit arguments are supplied, the branch which is currently checked out for writing
will be used as default.

Parameters

• branch (str, optional) – The name of the branch to start the log process from.
(Default value = None)

• commit (str, optional) – The commit hash to start the log process from. (Default
value = None)

• return_contents (bool, optional, kwarg only) – If true, return the com-
mit graph specifications in a dictionary suitable for programatic access/evaluation.

• show_time (bool, optional, kwarg only) – If true and return_contents is
False, show the time of each commit on the printed log graph

• show_user (bool, optional, kwarg only) – If true and return_contents is
False, show the committer of each commit on the printed log graph

Returns Dict containing the commit ancestor graph, and all specifications.

Return type Optional[dict]

merge(message: str, dev_branch: str)→ str
Merge the currently checked out commit with the provided branch name.

If a fast-forward merge is possible, it will be performed, and the commit message argument to this function
will be ignored.

Parameters

• message (str) – commit message to attach to a three-way merge

• dev_branch (str) – name of the branch which should be merge into this branch (ie
master)

Returns commit hash of the new commit for the master branch this checkout was started from.

Return type str

reset_staging_area()→ str
Perform a hard reset of the staging area to the last commit head.

After this operation completes, the writer checkout will automatically close in the typical fashion (any held
references to :attr:column or :attr:metadata objects will finalize and destruct as normal), In order to
perform any further operation, a new checkout needs to be opened.

Warning: This operation is IRREVERSIBLE. all records and data which are note stored in a previous
commit will be permanently deleted.

Returns Commit hash of the head which the staging area is reset to.

Return type str

Raises RuntimeError – If no changes have been made to the staging area, No-Op.

4.5. Python API 37

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError

Hangar, Release 0.5.2

values()
Generator yielding accessor object of every column

Columns

class Columns
Common access patterns and initialization/removal of columns in a checkout.

This object is the entry point to all data stored in their individual columns. Each column. contains a common
schema which dictates the general shape, dtype, and access patters which the backends optimize access for.
The methods contained within allow us to create, remove, query, and access these collections of common data
pieces.

__contains__(key: str)→ bool
Determine if a column with a particular name is stored in the checkout

Parameters key (str) – name of the column to check for

Returns True if a column with the provided name exists in the checkout, otherwise False.

Return type bool

__delitem__(key: str)→ str
remove a column and all data records if write-enabled process.

Parameters key (str) – Name of the column to remove from the repository. This will remove
all records from the staging area (though the actual data and all records are still accessible)
if they were previously committed

Returns If successful, the name of the removed column.

Return type str

Raises PermissionError – If any enclosed column is opened in a connection manager.

__getitem__(key: str)→ Union[NestedSampleReader, FlatSubsampleReader]
Dict style access to return the column object with specified key/name.

Parameters key (string) – name of the column object to get.

Returns The object which is returned depends on the mode of checkout specified. If the column
was checked out with write-enabled, return writer object, otherwise return read only object.

Return type ModifierTypes

__len__()→ int
Get the number of column columns contained in the checkout.

contains_remote_references
Dict of bool indicating data reference locality in each column.

Returns For each column name key, boolean value where False indicates all samples in column
exist locally, True if some reference remote sources.

Return type Mapping[str, bool]

delete(column: str)→ str
remove the column and all data contained within it.

Parameters column (str) – name of the column to remove

Returns name of the removed column

Return type str

38 Chapter 4. Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#PermissionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Hangar, Release 0.5.2

Raises

• PermissionError – If any enclosed column is opened in a connection manager.

• KeyError – If a column does not exist with the provided name

get(name: str)→ Union[NestedSampleReader, FlatSubsampleReader]
Returns a column access object.

This can be used in lieu of the dictionary style access.

Parameters name (str) – name of the column to return

Returns ColumnData accessor (set to read or write mode as appropriate) which governs inter-
action with the data

Return type ModifierTypes

iswriteable
Bool indicating if this column object is write-enabled. Read-only attribute.

items()→ Iterable[Tuple[str, Union[NestedSampleReader, FlatSubsampleReader]]]
generator providing access to column_name, Columns

Yields Iterable[Tuple[str, ModifierTypes]] – returns two tuple of all all column names/object
pairs in the checkout.

keys()→ List[str]
list all column keys (names) in the checkout

Returns list of column names

Return type List[str]

remote_sample_keys
Determine columns samples names which reference remote sources.

Returns dict where keys are column names and values are iterables of samples in the column
containing remote references

Return type Mapping[str, Iterable[Union[int, str]]]

values()→ Iterable[Union[NestedSampleReader, FlatSubsampleReader]]
yield all column object instances in the checkout.

Yields Iterable[ModifierTypes] – Generator of ColumnData accessor objects (set to read or write
mode as appropriate)

Flat Column Layout Container

class FlatSampleWriter

__contains__(key: Union[str, int])→ bool
Determine if a key is a valid sample name in the column.

__delitem__(key: Union[str, int])→ None
Remove a sample from the column. Convenience method to delete().

See also:

pop() to return a value and then delete it in the same operation

Parameters key (KeyType) – Name of the sample to remove from the column.

4.5. Python API 39

https://docs.python.org/3/library/exceptions.html#PermissionError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Hangar, Release 0.5.2

__getitem__(key: Union[str, int])
Retrieve data for some sample key via dict style access conventions.

See also:

get()

Parameters key (KeyType) – Sample key to retrieve from the column.

Returns Data corresponding to the provided sample key.

Return type value

Raises KeyError – if no sample with the requested key exists.

__iter__()→ Iterable[Union[str, int]]
Create iterator yielding an column sample keys.

Yields Iterable[KeyType] – Sample key contained in the column.

__len__()→ int
Check how many samples are present in a given column.

__setitem__(key, value)
Store a piece of data in a column.

See also:

update() for an implementation analogous to python’s built in dict.update() method which ac-
cepts a dict or iterable of key/value pairs to add in the same operation.

Parameters

• key – name to assign to the sample (assuming the column accepts named samples), If str,
can only contain alpha-numeric ascii characters (in addition to ‘-‘, ‘.’, ‘_’). Integer key
must be >= 0. by default, None

• value – data to store as a sample in the column.

append(value)→ Union[str, int]
Store some data in a sample with an automatically generated key.

This method should only be used if the context some piece of data is used in is independent from it’s value
(ie. when reading data back, there is no useful information which needs to be conveyed between the data
source’s name/id and the value of that piece of information.) Think carefully before going this route, as
this posit does not apply to many common use cases.

To store the data with a user defined key, use update() or __setitem__()

Parameters value – Piece of data to store in the column.

Returns Name of the generated key this data is stored with.

Return type KeyType

backend
Code indicating which backing store is used when writing data.

backend_options
Filter / Compression options applied to backend when writing data.

change_backend(backend: str, backend_options: Optional[dict] = None)
Change the default backend and filters applied to future data writes.

40 Chapter 4. Development

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict.update

Hangar, Release 0.5.2

Warning: This method is meant for advanced users only. Please refer to the hangar backend codebase
for information on accepted parameters and options.

Parameters

• backend (str) – Backend format code to swtich to.

• backend_options (Optional[dict]) – Backend option specification to use (if
specified). If left to default value of None, then default options for backend are automati-
cally used.

Raises

• RuntimeError – If this method was called while this column is invoked in a context
manager

• ValueError – If the backend format code is not valid.

column
Name of the column.

column_layout
Column layout type (‘nested’, ‘flat’, etc).

column_type
Data container type of the column (‘ndarray’, ‘str’, etc).

contains_remote_references
Bool indicating if all samples in column exist on local disk.

The data associated with samples referencing some remote server will need to be downloaded (fetched
in the hangar vocabulary) before they can be read into memory.

Returns False if at least one sample in the column references data stored on some remote server.
True if all sample data is available on the machine’s local disk.

Return type bool

contains_subsamples
Bool indicating if sub-samples are contained in this column container.

dtype
Dtype of the columns data (np.float, str, etc).

get(key: Union[str, int], default=None)
Retrieve the data associated with some sample key

Parameters

• key (KeyType) – The name of the subsample(s) to retrieve. Passing a single subsample
key will return the stored data value.

• default (Any) – if a key parameter is not found, then return this value instead. By
default, None.

Returns data data stored under subsample key if key exists, else default value if not found.

Return type value

iswriteable
Bool indicating if this column object is write-enabled.

4.5. Python API 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool

Hangar, Release 0.5.2

items(local: bool = False)→ Iterable[Tuple[Union[str, int], Any]]
Generator yielding (name, data) tuple for every subsample.

Parameters local (bool, optional) – If True, returned keys/values will only correspond
to data which is available for reading on the local disk, No attempt will be made to read data
existing on a remote server, by default False.

Yields Iterable[Tuple[KeyType, Any]] – Name and stored value for every subsample inside the
sample.

keys(local: bool = False)→ Iterable[Union[str, int]]
Generator yielding the name (key) of every subsample.

Parameters local (bool, optional) – If True, returned keys will only correspond to data
which is available for reading on the local disk, by default False.

Yields Iterable[KeyType] – Keys of one subsample at a time inside the sample.

pop(key: Union[str, int])
Retrieve some value for some key(s) and delete it in the same operation.

Parameters key (KeysType) – Sample key to remove

Returns Upon success, the value of the removed key.

Return type value

Raises KeyError – If there is no sample with some key in the column.

remote_reference_keys
Compute sample names whose data is stored in a remote server reference.

Returns list of sample keys in the column whose data references indicate they are stored on a
remote server.

Return type Tuple[KeyType]

schema_type
Schema type of the contained data (‘variable_shape’, ‘fixed_shape’, etc).

shape
(Max) shape of data that can (is) written in the column.

update(other=None, **kwargs)
Store some data with the key/value pairs from other, overwriting existing keys.

update() implements functionality similar to python’s builtin dict.update() method, accepting
either a dictionary or other iterable (of length two) listing key / value pairs.

Parameters

• other – Accepts either another dictionary object or an iterable of key/value pairs (as
tuples or other iterables of length two). mapping sample names to data value instances
instances, If sample name is string type, can only contain alpha-numeric ascii characters
(in addition to ‘-‘, ‘.’, ‘_’). Int key must be >= 0. By default, None.

• **kwargs – keyword arguments provided will be saved with keywords as sample keys
(string type only) and values as np.array instances.

values(local: bool = False)→ Iterable[Any]
Generator yielding the data for every subsample.

Parameters local (bool, optional) – If True, returned values will only correspond to
data which is available for reading on the local disk. No attempt will be made to read data
existing on a remote server, by default False.

42 Chapter 4. Development

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict.update
https://docs.python.org/3/library/functions.html#bool

Hangar, Release 0.5.2

Yields Iterable[Any] – Values of one subsample at a time inside the sample.

Nested Column Layout Container

class NestedSampleWriter

__contains__(key: Union[str, int])→ bool
Determine if some sample key exists in the column.

__delitem__(key: Union[str, int])
Remove a sample (including all contained subsamples) from the column.

See also:

pop() for alternative implementing a simultaneous get value and delete operation.

__getitem__(key: Union[str, int])→ hangar.columns.layout_nested.FlatSubsampleReader
Get the sample access class for some sample key.

Parameters key (KeyType) – Name of sample to retrieve

Returns Sample accessor corresponding to the given key

Return type FlatSubsampleReader

Raises KeyError – If no sample with the provided key exists.

__iter__()→ Iterable[Union[str, int]]
Create iterator yielding an column sample keys.

Yields Iterable[KeyType] – Sample key contained in the column.

__len__()→ int
Find number of samples in the column

__setitem__(key, value)→ None
Store some subsample key / subsample data map, overwriting existing keys.

See also:

update() for alternative syntax for setting values.

backend
Code indicating which backing store is used when writing data.

backend_options
Filter / Compression options applied to backend when writing data.

change_backend(backend: str, backend_options: Optional[dict] = None)
Change the default backend and filters applied to future data writes.

Warning: This method is meant for advanced users only. Please refer to the hangar backend codebase
for information on accepted parameters and options.

Parameters

• backend (str) – Backend format code to swtich to.

• backend_options – Backend option specification to use (if specified). If left to default
value of None, then default options for backend are automatically used.

4.5. Python API 43

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str

Hangar, Release 0.5.2

Raises

• RuntimeError – If this method was called while this column is invoked in a context
manager

• ValueError – If the backend format code is not valid.

column
Name of the column.

column_layout
Column layout type (‘nested’, ‘flat’, etc).

column_type
Data container type of the column (‘ndarray’, ‘str’, etc).

contains_remote_references
Bool indicating all subsamples in sample column exist on local disk.

The data associated with subsamples referencing some remote server will need to be downloaded
(fetched in the hangar vocabulary) before they can be read into memory.

Returns False if at least one subsample in the column references data stored on some remote
server. True if all sample data is available on the machine’s local disk.

Return type bool

contains_subsamples
Bool indicating if sub-samples are contained in this column container.

dtype
Dtype of the columns data (np.float, str, etc).

get(key: Union[str, int, ellipsis, slice], default: Any = None) →
hangar.columns.layout_nested.FlatSubsampleReader
Retrieve data for some sample key(s) in the column.

Parameters

• key (GetKeysType) – The name of the subsample(s) to retrieve

• default (Any) – if a key parameter is not found, then return this value instead. By
default, None.

Returns Sample accessor class given by name key which can be used to access subsample data.

Return type FlatSubsampleReader

iswriteable
Bool indicating if this column object is write-enabled.

items(local: bool = False)→ Iterable[Tuple[Union[str, int], Any]]
Generator yielding (name, data) tuple for every subsample.

Parameters local (bool, optional) – If True, returned keys/values will only correspond
to data which is available for reading on the local disk, No attempt will be made to read data
existing on a remote server, by default False.

Yields Iterable[Tuple[KeyType, Any]] – Name and stored value for every subsample inside the
sample.

keys(local: bool = False)→ Iterable[Union[str, int]]
Generator yielding the name (key) of every subsample.

44 Chapter 4. Development

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Hangar, Release 0.5.2

Parameters local (bool, optional) – If True, returned keys will only correspond to data
which is available for reading on the local disk, by default False.

Yields Iterable[KeyType] – Keys of one subsample at a time inside the sample.

num_subsamples
Calculate total number of subsamples existing in all samples in column

pop(key: Union[str, int])→ Dict[Union[str, int], Any]
Retrieve some value for some key(s) and delete it in the same operation.

Parameters key (KeysType) – sample key to remove

Returns Upon success, a nested dictionary mapping sample names to a dict of subsample names
and subsample values for every sample key passed into this method.

Return type Dict[KeyType, KeyArrMap]

remote_reference_keys
Compute subsample names whose data is stored in a remote server reference.

Returns list of subsample keys in the column whose data references indicate they are stored on
a remote server.

Return type Tuple[KeyType]

schema_type
Schema type of the contained data (‘variable_shape’, ‘fixed_shape’, etc).

shape
(Max) shape of data that can (is) written in the column.

update(other=None, **kwargs)→ None
Store some data with the key/value pairs, overwriting existing keys.

update() implements functionality similar to python’s builtin dict.update() method, accepting
either a dictionary or other iterable (of length two) listing key / value pairs.

Parameters

• other – Dictionary mapping sample names to subsample data maps. Or Sequence (list
or tuple) where element one is the sample name and element two is a subsample data map.

• **kwargs – keyword arguments provided will be saved with keywords as sample keys
(string type only) and values as a mapping of subarray keys to data values.

values(local: bool = False)→ Iterable[Any]
Generator yielding the tensor data for every subsample.

Parameters local (bool, optional) – If True, returned values will only correspond to
data which is available for reading on the local disk. No attempt will be made to read data
existing on a remote server, by default False.

Yields Iterable[Any] – Values of one subsample at a time inside the sample.

class FlatSubsampleWriter

__delitem__(key: Union[str, int])
Remove a subsample from the column.‘.

See also:

pop() to simultaneously get a keys value and delete it.

4.5. Python API 45

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict.update
https://docs.python.org/3/library/functions.html#bool

Hangar, Release 0.5.2

Parameters key (KeyType) – Name of the sample to remove from the column.

__getitem__(key: Union[str, int, ellipsis, slice])→ Union[Any, Dict[Union[str, int], Any]]
Retrieve data for some subsample key via dict style access conventions.

See also:

get()

Parameters key (GetKeysType) – Sample key to retrieve from the column. Alternatively,
slice syntax can be used to retrieve a selection of subsample keys/values. An empty slice
(: == slice(None)) or Ellipsis (...) will return all subsample keys/values. Pass-
ing a non-empty slice ([1:5] == slice(1, 5)) will select keys to retrieve by enumer-
ating all subsamples and retrieving the element (key) for each step across the range. Note:
order of enumeration is not guaranteed; do not rely on any ordering observed when using this
method.

Returns Sample data corresponding to the provided key. or dictionary of subsample keys/data
if Ellipsis or slice passed in as key.

Return type Union[Any, Dict[KeyType, Any]]

Raises KeyError – if no sample with the requested key exists.

__setitem__(key, value)
Store data as a subsample. Convenience method to add().

See also:

update() for an implementation analogous to python’s built in dict.update() method which ac-
cepts a dict or iterable of key/value pairs to add in the same operation.

Parameters

• key – Key (name) of the subsample to add to the column.

• value – Data to add as the sample.

append(value)→ Union[str, int]
Store some data in a subsample with an automatically generated key.

This method should only be used if the context some piece of data is used in is independent from it’s value
(ie. when reading data back, there is no useful information which needs to be conveyed between the data
source’s name/id and the value of that piece of information.) Think carefully before going this route, as
this posit does not apply to many common use cases.

See also:

In order to store the data with a user defined key, use update() or __setitem__()

Parameters value – Piece of data to store in the column.

Returns Name of the generated key this data is stored with.

Return type KeyType

column
Name of the column.

46 Chapter 4. Development

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict.update

Hangar, Release 0.5.2

contains_remote_references
Bool indicating all subsamples in sample column exist on local disk.

The data associated with subsamples referencing some remote server will need to be downloaded
(fetched in the hangar vocabulary) before they can be read into memory.

Returns False if at least one subsample in the column references data stored on some remote
server. True if all sample data is available on the machine’s local disk.

Return type bool

data
Return dict mapping every subsample key / data value stored in the sample.

Returns Dictionary mapping subsample name(s) (keys) to their stored values as numpy.
ndarray instances.

Return type Dict[KeyType, Any]

get(key: Union[str, int], default=None)
Retrieve the data associated with some subsample key

Parameters

• key (GetKeysType) – The name of the subsample(s) to retrieve. Passing a single sub-
sample key will return the stored numpy.ndarray

• default – if a key parameter is not found, then return this value instead. By default,
None.

Returns data stored under subsample key if key exists, else default value if not found.

Return type value

iswriteable
Bool indicating if this column object is write-enabled.

items(local: bool = False)→ Iterable[Tuple[Union[str, int], Any]]
Generator yielding (name, data) tuple for every subsample.

Parameters local (bool, optional) – If True, returned keys/values will only correspond
to data which is available for reading on the local disk, No attempt will be made to read data
existing on a remote server, by default False.

Yields Iterable[Tuple[KeyType, Any]] – Name and stored value for every subsample inside the
sample.

keys(local: bool = False)→ Iterable[Union[str, int]]
Generator yielding the name (key) of every subsample.

Parameters local (bool, optional) – If True, returned keys will only correspond to data
which is available for reading on the local disk, by default False.

Yields Iterable[KeyType] – Keys of one subsample at a time inside the sample.

pop(key: Union[str, int])
Retrieve some value for some key(s) and delete it in the same operation.

Parameters key (KeysType) – Sample key to remove

Returns Upon success, the value of the removed key.

Return type value

remote_reference_keys
Compute subsample names whose data is stored in a remote server reference.

4.5. Python API 47

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Hangar, Release 0.5.2

Returns list of subsample keys in the column whose data references indicate they are stored on
a remote server.

Return type Tuple[KeyType]

sample
Name of the sample this column subsamples are stured under.

update(other=None, **kwargs)
Store data with the key/value pairs, overwriting existing keys.

update() implements functionality similar to python’s builtin dict.update() method, accepting
either a dictionary or other iterable (of length two) listing key / value pairs.

Parameters

• other – Accepts either another dictionary object or an iterable of key/value pairs (as
tuples or other iterables of length two). mapping sample names to data values, If sample
name is string type, can only contain alpha-numeric ascii characters (in addition to ‘-‘, ‘.’,
‘_’). Int key must be >= 0. By default, None.

• **kwargs – keyword arguments provided will be saved with keywords as subsample
keys (string type only) and values as np.array instances.

values(local: bool = False)→ Iterable[Any]
Generator yielding the data for every subsample.

Parameters local (bool, optional) – If True, returned values will only correspond to
data which is available for reading on the local disk. No attempt will be made to read data
existing on a remote server, by default False.

Yields Iterable[Any] – Values of one subsample at a time inside the sample.

Differ

class WriterUserDiff
Methods diffing contents of a WriterCheckout instance.

These provide diffing implementations to compare the current HEAD of a checkout to a branch, commit, or the
staging area "base" contents. The results are generally returned as a nested set of named tuples. In addition,
the status() method is implemented which can be used to quickly determine if there are any uncommitted
changes written in the checkout.

When diffing of commits or branches is performed, if there is not a linear history of commits between current
HEAD and the diff commit (ie. a history which would permit a "fast-forward" merge), the result field
named conflict will contain information on any merge conflicts that would exist if staging area HEAD and
the (compared) "dev" HEAD were merged “right now”. Though this field is present for all diff comparisons,
it can only contain non-empty values in the cases where a three way merge would need to be performed.

Fast Forward is Possible
========================

(master) (foo)
a ----- b ----- c ----- d

3-Way Merge Required
====================

(continues on next page)

48 Chapter 4. Development

https://docs.python.org/3/library/stdtypes.html#dict.update
https://docs.python.org/3/library/functions.html#bool

Hangar, Release 0.5.2

(continued from previous page)

(master)
a ----- b ----- c ----- d

\
\ (foo)
\----- ee ----- ff

branch(dev_branch: str)→ hangar.diff.DiffAndConflicts
Compute diff between HEAD and branch, returning user-facing results.

Parameters dev_branch (str) – name of the branch whose HEAD will be used to calculate
the diff of.

Returns two-tuple of diff, conflict (if any) calculated in the diff algorithm.

Return type DiffAndConflicts

Raises ValueError – If the specified dev_branch does not exist.

commit(dev_commit_hash: str)→ hangar.diff.DiffAndConflicts
Compute diff between HEAD and commit, returning user-facing results.

Parameters dev_commit_hash (str) – hash of the commit to be used as the comparison.

Returns two-tuple of diff, conflict (if any) calculated in the diff algorithm.

Return type DiffAndConflicts

Raises ValueError – if the specified dev_commit_hash is not a valid commit reference.

staged()→ hangar.diff.DiffAndConflicts
Return diff of staging area to base, returning user-facing results.

Returns two-tuple of diff, conflict (if any) calculated in the diff algorithm.

Return type DiffAndConflicts

status()→ str
Determine if changes have been made in the staging area

If the contents of the staging area and it’s parent commit are the same, the status is said to be “CLEAN”.
If even one column or metadata record has changed however, the status is “DIRTY”.

Returns “CLEAN” if no changes have been made, otherwise “DIRTY”

Return type str

4.5.3 Read Only Checkout

Checkout

class ReaderCheckout
Checkout the repository as it exists at a particular branch.

This class is instantiated automatically from a repository checkout operation. This object will govern all access
to data and interaction methods the user requests.

>>> co = repo.checkout()
>>> isinstance(co, ReaderCheckout)
True

4.5. Python API 49

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

Hangar, Release 0.5.2

If a commit hash is provided, it will take precedent over the branch name parameter. If neither a branch not
commit is specified, the staging environment’s base branch HEAD commit hash will be read.

>>> co = repo.checkout(commit='foocommit')
>>> co.commit_hash
'foocommit'
>>> co.close()
>>> co = repo.checkout(branch='testbranch')
>>> co.commit_hash
'someothercommithashhere'
>>> co.close()

Unlike WriterCheckout, any number of ReaderCheckout objects can exist on the repository indepen-
dently. Like the write-enabled variant, the close() method should be called after performing the neces-
sary operations on the repo. However, as there is no concept of a lock for read-only checkouts, this is just
to free up memory resources, rather than changing recorded access state.

In order to reduce the chance that the python interpreter is shut down without calling close(), - a common
mistake during ipython / jupyter sessions - an atexit hook is registered to close(). If properly closed by the
user, the hook is unregistered after completion with no ill effects. So long as a the process is NOT terminated
via non-python SIGKILL, fatal internal python error, or or special os exit methods, cleanup will occur
on interpreter shutdown and resources will be freed. If a non-handled termination method does occur, the
implications of holding resources varies on a per-OS basis. While no risk to data integrity is observed, repeated
misuse may require a system reboot in order to achieve expected performance characteristics.

__contains__(key)
Determine if some column name (key) exists in the checkout.

__getitem__(index)
Dictionary style access to columns and samples

Checkout object can be thought of as a “dataset” (“dset”) mapping a view of samples across columns.

>>> dset = repo.checkout(branch='master')
>>>
Get an column contained in the checkout.
>>> dset['foo']
ColumnDataReader
>>>
Get a specific sample from ``'foo'`` (returns a single array)
>>> dset['foo', '1']
np.array([1])
>>>
Get multiple samples from ``'foo'`` (returns a list of arrays, in order
of input keys)
>>> dset[['foo', '1'], ['foo', '2'], ['foo', '324']]
[np.array([1]), np.ndarray([2]), np.ndarray([324])]
>>>
Get sample from multiple columns, column/data returned is ordered
in same manner as input of func.
>>> dset[['foo', '1'], ['bar', '1'], ['baz', '1']]
[np.array([1]), np.ndarray([1, 1]), np.ndarray([1, 1, 1])]
>>>
Get multiple samples from multiple columns >>> keys = [(col,
→˓str(samp)) for samp in range(2) for col in ['foo', 'bar']]
>>> keys
[('foo', '0'), ('bar', '0'), ('foo', '1'), ('bar', '1')]
>>> dset[keys]
[np.array([1]), np.array([1, 1]), np.array([2]), np.array([2, 2])]

50 Chapter 4. Development

https://docs.python.org/3/library/atexit.html

Hangar, Release 0.5.2

Arbitrary column layouts are supported by simply adding additional members to the keys for each piece
of data. For example, getting data from a column with a nested layout:

>>> dset['nested_col', 'sample_1', 'subsample_0']
np.array([1, 0])
>>>
a sample accessor object can be retrieved at will...
>>> dset['nested_col', 'sample_1']
<class 'FlatSubsampleReader'>(column_name='nested_col', sample_name='sample_1
→˓')
>>>
to get all subsamples in a nested sample use the Ellipsis operator
>>> dset['nested_col', 'sample_1', ...]
{'subsample_0': np.array([1, 0]),
'subsample_1': np.array([1, 1]),
...
'subsample_n': np.array([1, 255])}

Retrieval of data from different column types can be mixed and combined as desired. For example, re-
trieving data from both flat and nested columns simultaneously:

>>> dset[('nested_col', 'sample_1', '0'), ('foo', '0')]
[np.array([1, 0]), np.array([0])]
>>> dset[('nested_col', 'sample_1', ...), ('foo', '0')]
[{'subsample_0': np.array([1, 0]), 'subsample_1': np.array([1, 1])},
np.array([0])]

>>> dset[('foo', '0'), ('nested_col', 'sample_1')]
[np.array([0]),
<class 'FlatSubsampleReader'>(column_name='nested_col', sample_name='sample_1
→˓')]

If a column or data key does not exist, then this method will raise a KeyError. As an alternative, missing
keys can be gracefully handeled by calling get() instead. This method does not (by default) raise an
error if a key is missing. Instead, a (configurable) default value is simply inserted in it’s place.

>>> dset['foo', 'DOES_NOT_EXIST']

KeyError Traceback (most recent call last)
<ipython-input-40-731e6ea62fb8> in <module>
----> 1 res = co['foo', 'DOES_NOT_EXIST']
KeyError: 'DOES_NOT_EXIST'

Parameters index – column name, sample key(s) or sequence of list/tuple of column name,
sample keys(s) which should be retrieved in the operation.

Please see detailed explanation above for full explanation of accepted argument format /
result types.

Returns

• Columns – single column parameter, no samples specified

• Any – Single column specified, single sample key specified

• List[Any] – arbitrary columns, multiple samples array data for each sample is returned in
same order sample keys are received.

__iter__()
Iterate over column keys

4.5. Python API 51

Hangar, Release 0.5.2

__len__()
Returns number of columns in the checkout.

close()→ None
Gracefully close the reader checkout object.

Though not strictly required for reader checkouts (as opposed to writers), closing the checkout after reading
will free file handles and system resources, which may improve performance for repositories with multiple
simultaneous read checkouts.

columns
Provides access to column interaction object.

Can be used to either return the columns accessor for all elements or a single column instance by using
dictionary style indexing.

>>> co = repo.checkout(write=False)
>>> len(co.columns)
1
>>> print(co.columns.keys())
['foo']
>>> fooCol = co.columns['foo']
>>> fooCol.dtype
np.fooDtype
>>> cols = co.columns
>>> fooCol = cols['foo']
>>> fooCol.dtype
np.fooDtype
>>> fooCol = cols.get('foo')
>>> fooCol.dtype
np.fooDtype

See also:

The class Columns contains all methods accessible by this property accessor

Returns the columns object which behaves exactly like a columns accessor class but which can
be invalidated when the writer lock is released.

Return type Columns

commit_hash
Commit hash this read-only checkout’s data is read from.

>>> co = repo.checkout()
>>> co.commit_hash
foohashdigesthere

Returns commit hash of the checkout

Return type str

diff
Access the differ methods for a read-only checkout.

See also:

The class ReaderUserDiff contains all methods accessible by this property accessor

52 Chapter 4. Development

https://docs.python.org/3/library/stdtypes.html#str

Hangar, Release 0.5.2

Returns weakref proxy to the differ object (and contained methods) which behaves exactly like
the differ class but which can be invalidated when the writer lock is released.

Return type ReaderUserDiff

get(keys, default=None, except_missing=False)
View of sample data across columns gracefully handling missing sample keys.

Please see __getitem__() for full description. This method is identical with a single exception: if a
sample key is not present in an column, this method will plane a null None value in it’s return slot rather
than throwing a KeyError like the dict style access does.

Parameters

• keys – sequence of column name (and optionally) sample key(s) or sequence of list/tuple
of column name, sample keys(s) which should be retrieved in the operation.

Please see detailed explanation in __getitem__() for full explanation of accepted ar-
gument format / result types.

• default (Any, optional) – default value to insert in results for the case where some
column name / sample key is not found, and the except_missing parameter is set to False.

• except_missing (bool, optional) – If False, will not throw exceptions on miss-
ing sample key value. Will raise KeyError if True and missing key found.

Returns

• Columns – single column parameter, no samples specified

• Any – Single column specified, single sample key specified

• List[Any] – arbitrary columns, multiple samples array data for each sample is returned in
same order sample keys are received.

items()
Generator yielding tuple of (name, accessor object) of every column

keys()
Generator yielding the name (key) of every column

log(branch: str = None, commit: str = None, *, return_contents: bool = False, show_time: bool =
False, show_user: bool = False)→ Optional[dict]
Displays a pretty printed commit log graph to the terminal.

Note: For programatic access, the return_contents value can be set to true which will retrieve relevant
commit specifications as dictionary elements.

if Neither branch nor commit arguments are supplied, the commit digest of the currently reader checkout
will be used as default.

Parameters

• branch (str, optional) – The name of the branch to start the log process from.
(Default value = None)

• commit (str, optional) – The commit hash to start the log process from. (Default
value = None)

• return_contents (bool, optional, kwarg only) – If true, return the com-
mit graph specifications in a dictionary suitable for programatic access/evaluation.

4.5. Python API 53

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Hangar, Release 0.5.2

• show_time (bool, optional, kwarg only) – If true and return_contents is
False, show the time of each commit on the printed log graph

• show_user (bool, optional, kwarg only) – If true and return_contents is
False, show the committer of each commit on the printed log graph

Returns Dict containing the commit ancestor graph, and all specifications.

Return type Optional[dict]

values()
Generator yielding accessor object of every column

Flat Column Layout Container

class FlatSampleWriter

__contains__(key: Union[str, int])→ bool
Determine if a key is a valid sample name in the column.

__delitem__(key: Union[str, int])→ None
Remove a sample from the column. Convenience method to delete().

See also:

pop() to return a value and then delete it in the same operation

Parameters key (KeyType) – Name of the sample to remove from the column.

__getitem__(key: Union[str, int])
Retrieve data for some sample key via dict style access conventions.

See also:

get()

Parameters key (KeyType) – Sample key to retrieve from the column.

Returns Data corresponding to the provided sample key.

Return type value

Raises KeyError – if no sample with the requested key exists.

__iter__()→ Iterable[Union[str, int]]
Create iterator yielding an column sample keys.

Yields Iterable[KeyType] – Sample key contained in the column.

__len__()→ int
Check how many samples are present in a given column.

__setitem__(key, value)
Store a piece of data in a column.

See also:

update() for an implementation analogous to python’s built in dict.update() method which ac-
cepts a dict or iterable of key/value pairs to add in the same operation.

Parameters

54 Chapter 4. Development

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict.update

Hangar, Release 0.5.2

• key – name to assign to the sample (assuming the column accepts named samples), If str,
can only contain alpha-numeric ascii characters (in addition to ‘-‘, ‘.’, ‘_’). Integer key
must be >= 0. by default, None

• value – data to store as a sample in the column.

append(value)→ Union[str, int]
Store some data in a sample with an automatically generated key.

This method should only be used if the context some piece of data is used in is independent from it’s value
(ie. when reading data back, there is no useful information which needs to be conveyed between the data
source’s name/id and the value of that piece of information.) Think carefully before going this route, as
this posit does not apply to many common use cases.

To store the data with a user defined key, use update() or __setitem__()

Parameters value – Piece of data to store in the column.

Returns Name of the generated key this data is stored with.

Return type KeyType

backend
Code indicating which backing store is used when writing data.

backend_options
Filter / Compression options applied to backend when writing data.

change_backend(backend: str, backend_options: Optional[dict] = None)
Change the default backend and filters applied to future data writes.

Warning: This method is meant for advanced users only. Please refer to the hangar backend codebase
for information on accepted parameters and options.

Parameters

• backend (str) – Backend format code to swtich to.

• backend_options (Optional[dict]) – Backend option specification to use (if
specified). If left to default value of None, then default options for backend are automati-
cally used.

Raises

• RuntimeError – If this method was called while this column is invoked in a context
manager

• ValueError – If the backend format code is not valid.

column
Name of the column.

column_layout
Column layout type (‘nested’, ‘flat’, etc).

column_type
Data container type of the column (‘ndarray’, ‘str’, etc).

contains_remote_references
Bool indicating if all samples in column exist on local disk.

4.5. Python API 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError

Hangar, Release 0.5.2

The data associated with samples referencing some remote server will need to be downloaded (fetched
in the hangar vocabulary) before they can be read into memory.

Returns False if at least one sample in the column references data stored on some remote server.
True if all sample data is available on the machine’s local disk.

Return type bool

contains_subsamples
Bool indicating if sub-samples are contained in this column container.

dtype
Dtype of the columns data (np.float, str, etc).

get(key: Union[str, int], default=None)
Retrieve the data associated with some sample key

Parameters

• key (KeyType) – The name of the subsample(s) to retrieve. Passing a single subsample
key will return the stored data value.

• default (Any) – if a key parameter is not found, then return this value instead. By
default, None.

Returns data data stored under subsample key if key exists, else default value if not found.

Return type value

iswriteable
Bool indicating if this column object is write-enabled.

items(local: bool = False)→ Iterable[Tuple[Union[str, int], Any]]
Generator yielding (name, data) tuple for every subsample.

Parameters local (bool, optional) – If True, returned keys/values will only correspond
to data which is available for reading on the local disk, No attempt will be made to read data
existing on a remote server, by default False.

Yields Iterable[Tuple[KeyType, Any]] – Name and stored value for every subsample inside the
sample.

keys(local: bool = False)→ Iterable[Union[str, int]]
Generator yielding the name (key) of every subsample.

Parameters local (bool, optional) – If True, returned keys will only correspond to data
which is available for reading on the local disk, by default False.

Yields Iterable[KeyType] – Keys of one subsample at a time inside the sample.

pop(key: Union[str, int])
Retrieve some value for some key(s) and delete it in the same operation.

Parameters key (KeysType) – Sample key to remove

Returns Upon success, the value of the removed key.

Return type value

Raises KeyError – If there is no sample with some key in the column.

remote_reference_keys
Compute sample names whose data is stored in a remote server reference.

Returns list of sample keys in the column whose data references indicate they are stored on a
remote server.

56 Chapter 4. Development

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError

Hangar, Release 0.5.2

Return type Tuple[KeyType]

schema_type
Schema type of the contained data (‘variable_shape’, ‘fixed_shape’, etc).

shape
(Max) shape of data that can (is) written in the column.

update(other=None, **kwargs)
Store some data with the key/value pairs from other, overwriting existing keys.

update() implements functionality similar to python’s builtin dict.update() method, accepting
either a dictionary or other iterable (of length two) listing key / value pairs.

Parameters

• other – Accepts either another dictionary object or an iterable of key/value pairs (as
tuples or other iterables of length two). mapping sample names to data value instances
instances, If sample name is string type, can only contain alpha-numeric ascii characters
(in addition to ‘-‘, ‘.’, ‘_’). Int key must be >= 0. By default, None.

• **kwargs – keyword arguments provided will be saved with keywords as sample keys
(string type only) and values as np.array instances.

values(local: bool = False)→ Iterable[Any]
Generator yielding the data for every subsample.

Parameters local (bool, optional) – If True, returned values will only correspond to
data which is available for reading on the local disk. No attempt will be made to read data
existing on a remote server, by default False.

Yields Iterable[Any] – Values of one subsample at a time inside the sample.

Nested Column Layout Container

class NestedSampleReader

__contains__(key: Union[str, int])→ bool
Determine if some sample key exists in the column.

__getitem__(key: Union[str, int])→ hangar.columns.layout_nested.FlatSubsampleReader
Get the sample access class for some sample key.

Parameters key (KeyType) – Name of sample to retrieve

Returns Sample accessor corresponding to the given key

Return type FlatSubsampleReader

Raises KeyError – If no sample with the provided key exists.

__iter__()→ Iterable[Union[str, int]]
Create iterator yielding an column sample keys.

Yields Iterable[KeyType] – Sample key contained in the column.

__len__()→ int
Find number of samples in the column

backend
Code indicating which backing store is used when writing data.

4.5. Python API 57

https://docs.python.org/3/library/stdtypes.html#dict.update
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError

Hangar, Release 0.5.2

backend_options
Filter / Compression options applied to backend when writing data.

column
Name of the column.

column_layout
Column layout type (‘nested’, ‘flat’, etc).

column_type
Data container type of the column (‘ndarray’, ‘str’, etc).

contains_remote_references
Bool indicating all subsamples in sample column exist on local disk.

The data associated with subsamples referencing some remote server will need to be downloaded
(fetched in the hangar vocabulary) before they can be read into memory.

Returns False if at least one subsample in the column references data stored on some remote
server. True if all sample data is available on the machine’s local disk.

Return type bool

contains_subsamples
Bool indicating if sub-samples are contained in this column container.

dtype
Dtype of the columns data (np.float, str, etc).

get(key: Union[str, int, ellipsis, slice], default: Any = None) →
hangar.columns.layout_nested.FlatSubsampleReader
Retrieve data for some sample key(s) in the column.

Parameters

• key (GetKeysType) – The name of the subsample(s) to retrieve

• default (Any) – if a key parameter is not found, then return this value instead. By
default, None.

Returns Sample accessor class given by name key which can be used to access subsample data.

Return type FlatSubsampleReader

iswriteable
Bool indicating if this column object is write-enabled.

items(local: bool = False)→ Iterable[Tuple[Union[str, int], Any]]
Generator yielding (name, data) tuple for every subsample.

Parameters local (bool, optional) – If True, returned keys/values will only correspond
to data which is available for reading on the local disk, No attempt will be made to read data
existing on a remote server, by default False.

Yields Iterable[Tuple[KeyType, Any]] – Name and stored value for every subsample inside the
sample.

keys(local: bool = False)→ Iterable[Union[str, int]]
Generator yielding the name (key) of every subsample.

Parameters local (bool, optional) – If True, returned keys will only correspond to data
which is available for reading on the local disk, by default False.

Yields Iterable[KeyType] – Keys of one subsample at a time inside the sample.

58 Chapter 4. Development

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Hangar, Release 0.5.2

num_subsamples
Calculate total number of subsamples existing in all samples in column

remote_reference_keys
Compute subsample names whose data is stored in a remote server reference.

Returns list of subsample keys in the column whose data references indicate they are stored on
a remote server.

Return type Tuple[KeyType]

schema_type
Schema type of the contained data (‘variable_shape’, ‘fixed_shape’, etc).

shape
(Max) shape of data that can (is) written in the column.

values(local: bool = False)→ Iterable[Any]
Generator yielding the tensor data for every subsample.

Parameters local (bool, optional) – If True, returned values will only correspond to
data which is available for reading on the local disk. No attempt will be made to read data
existing on a remote server, by default False.

Yields Iterable[Any] – Values of one subsample at a time inside the sample.

class FlatSubsampleReader

__getitem__(key: Union[str, int, ellipsis, slice])→ Union[Any, Dict[Union[str, int], Any]]
Retrieve data for some subsample key via dict style access conventions.

See also:

get()

Parameters key (GetKeysType) – Sample key to retrieve from the column. Alternatively,
slice syntax can be used to retrieve a selection of subsample keys/values. An empty slice
(: == slice(None)) or Ellipsis (...) will return all subsample keys/values. Pass-
ing a non-empty slice ([1:5] == slice(1, 5)) will select keys to retrieve by enumer-
ating all subsamples and retrieving the element (key) for each step across the range. Note:
order of enumeration is not guaranteed; do not rely on any ordering observed when using this
method.

Returns Sample data corresponding to the provided key. or dictionary of subsample keys/data
if Ellipsis or slice passed in as key.

Return type Union[Any, Dict[KeyType, Any]]

Raises KeyError – if no sample with the requested key exists.

column
Name of the column.

contains_remote_references
Bool indicating all subsamples in sample column exist on local disk.

The data associated with subsamples referencing some remote server will need to be downloaded
(fetched in the hangar vocabulary) before they can be read into memory.

Returns False if at least one subsample in the column references data stored on some remote
server. True if all sample data is available on the machine’s local disk.

4.5. Python API 59

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#KeyError

Hangar, Release 0.5.2

Return type bool

data
Return dict mapping every subsample key / data value stored in the sample.

Returns Dictionary mapping subsample name(s) (keys) to their stored values as numpy.
ndarray instances.

Return type Dict[KeyType, Any]

get(key: Union[str, int], default=None)
Retrieve the data associated with some subsample key

Parameters

• key (GetKeysType) – The name of the subsample(s) to retrieve. Passing a single sub-
sample key will return the stored numpy.ndarray

• default – if a key parameter is not found, then return this value instead. By default,
None.

Returns data stored under subsample key if key exists, else default value if not found.

Return type value

iswriteable
Bool indicating if this column object is write-enabled.

items(local: bool = False)→ Iterable[Tuple[Union[str, int], Any]]
Generator yielding (name, data) tuple for every subsample.

Parameters local (bool, optional) – If True, returned keys/values will only correspond
to data which is available for reading on the local disk, No attempt will be made to read data
existing on a remote server, by default False.

Yields Iterable[Tuple[KeyType, Any]] – Name and stored value for every subsample inside the
sample.

keys(local: bool = False)→ Iterable[Union[str, int]]
Generator yielding the name (key) of every subsample.

Parameters local (bool, optional) – If True, returned keys will only correspond to data
which is available for reading on the local disk, by default False.

Yields Iterable[KeyType] – Keys of one subsample at a time inside the sample.

remote_reference_keys
Compute subsample names whose data is stored in a remote server reference.

Returns list of subsample keys in the column whose data references indicate they are stored on
a remote server.

Return type Tuple[KeyType]

sample
Name of the sample this column subsamples are stured under.

values(local: bool = False)→ Iterable[Any]
Generator yielding the data for every subsample.

Parameters local (bool, optional) – If True, returned values will only correspond to
data which is available for reading on the local disk. No attempt will be made to read data
existing on a remote server, by default False.

Yields Iterable[Any] – Values of one subsample at a time inside the sample.

60 Chapter 4. Development

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Hangar, Release 0.5.2

Differ

class ReaderUserDiff
Methods diffing contents of a ReaderCheckout instance.

These provide diffing implementations to compare the current checkout HEAD of a to a branch or commit. The
results are generally returned as a nested set of named tuples.

When diffing of commits or branches is performed, if there is not a linear history of commits between current
HEAD and the diff commit (ie. a history which would permit a "fast-forward" merge), the result field
named conflict will contain information on any merge conflicts that would exist if staging area HEAD and
the (compared) "dev" HEAD were merged “right now”. Though this field is present for all diff comparisons,
it can only contain non-empty values in the cases where a three way merge would need to be performed.

Fast Forward is Possible
========================

(master) (foo)
a ----- b ----- c ----- d

3-Way Merge Required
====================

(master)
a ----- b ----- c ----- d

\
\ (foo)
\----- ee ----- ff

branch(dev_branch: str)→ hangar.diff.DiffAndConflicts
Compute diff between HEAD and branch name, returning user-facing results.

Parameters dev_branch (str) – name of the branch whose HEAD will be used to calculate
the diff of.

Returns two-tuple of diff, conflict (if any) calculated in the diff algorithm.

Return type DiffAndConflicts

Raises ValueError – If the specified dev_branch does not exist.

commit(dev_commit_hash: str)→ hangar.diff.DiffAndConflicts
Compute diff between HEAD and commit hash, returning user-facing results.

Parameters dev_commit_hash (str) – hash of the commit to be used as the comparison.

Returns two-tuple of diff, conflict (if any) calculated in the diff algorithm.

Return type DiffAndConflicts

Raises ValueError – if the specified dev_commit_hash is not a valid commit reference.

4.5.4 ML Framework Dataloaders

Tensorflow

make_tf_dataset(columns, keys: Sequence[str] = None, index_range: slice = None, shuffle: bool = True)
Uses the hangar columns to make a tensorflow dataset. It uses from_generator function from tensor-
flow.data.Dataset with a generator function that wraps all the hangar columns. In such instances tensorflow

4.5. Python API 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Hangar, Release 0.5.2

Dataset does shuffle by loading the subset of data which can fit into the memory and shuffle that subset. Since it
is not really a global shuffle make_tf_dataset accepts a shuffle argument which will be used by the generator to
shuffle each time it is being called.

Warning: tf.data.Dataset.from_generator currently uses tf.compat.v1.py_func() internally. Hence the se-
rialization function (yield_data) will not be serialized in a GraphDef. Therefore, you won’t be able to
serialize your model and restore it in a different environment if you use make_tf_dataset. The operation
must run in the same address space as the Python program that calls tf.compat.v1.py_func(). If you are using
distributed TensorFlow, you must run a tf.distribute.Server in the same process as the program that calls
tf.compat.v1.py_func() and you must pin the created operation to a device in that server (e.g. using with
tf.device():)

Parameters

• columns (Columns or Sequence) – A column object, a tuple of column object or a list of
column objects‘

• keys (Sequence[str]) – An iterable of sample names. If given only those samples will
fetched from the column

• index_range (slice) – A python slice object which will be used to find the subset of
column. Argument keys takes priority over index_range i.e. if both are given, keys will be
used and index_range will be ignored

• shuffle (bool) – generator uses this to decide a global shuffle accross all the samples
is required or not. But user doesn’t have any restriction on doing‘column.shuffle()‘ on the
returned column

Examples

>>> from hangar import Repository
>>> from hangar import make_tf_dataset
>>> import tensorflow as tf
>>> tf.compat.v1.enable_eager_execution()
>>> repo = Repository('.')
>>> co = repo.checkout()
>>> data = co.columns['mnist_data']
>>> target = co.columns['mnist_target']
>>> tf_dset = make_tf_dataset([data, target])
>>> tf_dset = tf_dset.batch(512)
>>> for bdata, btarget in tf_dset:
... print(bdata.shape, btarget.shape)

Returns

Return type tf.data.Dataset

Pytorch

make_torch_dataset(columns, keys: Sequence[str] = None, index_range: slice = None, field_names:
Sequence[str] = None)

Returns a torch.utils.data.Dataset object which can be loaded into a torch.utils.data.
DataLoader.

62 Chapter 4. Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/functions.html#bool
https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset
https://pytorch.org/docs/master/data.html#torch.utils.data.DataLoader
https://pytorch.org/docs/master/data.html#torch.utils.data.DataLoader

Hangar, Release 0.5.2

Warning: On Windows systems, setting the parameter num_workers in the resulting torch.utils.
data.DataLoader method will result in a RuntimeError or deadlock. This is due to limitations of multi-
process start methods on Windows itself. Using the default argument value (num_workers=0) will let the
DataLoader work in single process mode as expected.

Parameters

• columns (Columns or Sequence) – A column object, a tuple of column object or a list of
column objects.

• keys (Sequence[str]) – An iterable collection of sample names. If given only those
samples will fetched from the column

• index_range (slice) – A python slice object which will be used to find the subset of
column. Argument keys takes priority over range i.e. if both are given, keys will be used
and range will be ignored

• field_names (Sequence[str], optional) – An array of field names used as the
field_names for the returned dict keys. If not given, column names will be used as the
field_names.

Examples

>>> from hangar import Repository
>>> from torch.utils.data import DataLoader
>>> from hangar import make_torch_dataset
>>> repo = Repository('.')
>>> co = repo.checkout()
>>> aset = co.columns['dummy_aset']
>>> torch_dset = make_torch_dataset(aset, index_range=slice(1, 100))
>>> loader = DataLoader(torch_dset, batch_size=16)
>>> for batch in loader:
... train_model(batch)

Returns

Return type torch.utils.data.Dataset

4.6 Hangar Tutorial

Warning: The usage info displayed in the latest build of the project documentation do not reflect recent
changes to the API and internal structure of the project. They should not be relied on at the current moment; they
will be updated over the next weeks, and will be in line before the next release.

4.6.1 Quick Start Tutorial

A simple step-by-step guide that will quickly get you started with Hangar basics, including initializing a repository,
adding and committing data to a repository.

4.6. Hangar Tutorial 63

https://pytorch.org/docs/master/data.html#torch.utils.data.DataLoader
https://pytorch.org/docs/master/data.html#torch.utils.data.DataLoader
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#str
https://pytorch.org/docs/master/data.html#torch.utils.data.Dataset

Hangar, Release 0.5.2

Installation

You can install Hangar via pip:

$ pip install hangar

or via conda:

$ conda install -c conda-forge hangar

Please refer to the Installation page for more information.

4.6.2 Quick Start for the Impatient

The only import statement you’ll ever need:

[1]: from hangar import Repository

Create and initialize a new Hangar Repository at the given path:

[2]: !mkdir /Volumes/Archivio/tensorwerk/hangar/quick-start

repo = Repository(path="/Volumes/Archivio/tensorwerk/hangar/quick-start")

repo.init(
user_name="Alessia Marcolini", user_email="alessia@tensorwerk.com", remove_

→˓old=True
)

Hangar Repo initialized at: /Volumes/Archivio/tensorwerk/hangar/quick-start/.hangar

//anaconda/envs/hangar-tutorial/lib/python3.8/site-packages/hangar/context.py:92:
→˓UserWarning: No repository exists at /Volumes/Archivio/tensorwerk/hangar/quick-
→˓start/.hangar, please use `repo.init()` method
warnings.warn(msg, UserWarning)

[2]: '/Volumes/Archivio/tensorwerk/hangar/quick-start/.hangar'

Checkout the Repository in write mode:

[3]: master_checkout = repo.checkout(write=True)
master_checkout

[3]: Hangar WriterCheckout
Writer : True
Base Branch : master
Num Columns : 0

Inspect the columns we have (we just started, none so far):

[4]: master_checkout.columns

[4]: Hangar Columns
Writeable : True
Number of Columns : 0
Column Names / Partial Remote References:

-

64 Chapter 4. Development

Hangar, Release 0.5.2

Prepare some random data to play with:

[5]: import numpy as np

dummy = np.random.rand(3,2)
dummy

[5]: array([[0.17961852, 0.31945355],
[0.10929027, 0.2681622],
[0.29397449, 0.02659856]])

Create a new column named dummy_column:

[6]: dummy_col = master_checkout.add_ndarray_column(name="dummy_column", prototype=dummy)
dummy_col

[6]: Hangar FlatSampleWriter
Column Name : dummy_column
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : float64
Shape : (3, 2)
Number of Samples : 0
Partial Remote Data Refs : False

Add data to dummy_column, treating it as a normal Python dictionary:

[7]: dummy_col[0] = dummy

[8]: dummy_col[1] = np.random.rand(3,2)

Commit your changes providing a message:

[9]: master_checkout.commit("Add dummy_column with 2 samples")

[9]: 'a=c104ef7e2cfe87318e78addd6033028488050cea'

Add more data and commit again:

[10]: dummy_col[2] = np.random.rand(3,2)
dummy_col

[10]: Hangar FlatSampleWriter
Column Name : dummy_column
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : float64
Shape : (3, 2)
Number of Samples : 3
Partial Remote Data Refs : False

[11]: master_checkout.commit("Add one more sample to dummy_column")

4.6. Hangar Tutorial 65

Hangar, Release 0.5.2

[11]: 'a=099557d48edebb7607fa3ec648eafa2a1af5e652'

See the master branch history:

[12]: master_checkout.log()

* a=099557d48edebb7607fa3ec648eafa2a1af5e652 (master) : Add one more sample to dummy_
→˓column

* a=c104ef7e2cfe87318e78addd6033028488050cea : Add dummy_column with 2 samples

Close the write-enabled checkout:

[13]: master_checkout.close()

Inspect the status of the Repository:

[14]: repo.summary()

Summary of Contents Contained in Data Repository

==================
Repository Info
Base Directory: /Volumes/Archivio/tensorwerk/hangar/quick-start
Disk Usage: 237.53 kB

===================
Commit Details
Commit: a=099557d48edebb7607fa3ec648eafa2a1af5e652
Created: Mon May 4 13:00:43 2020
By: Alessia Marcolini
Email: alessia@tensorwerk.com
Message: Add one more sample to dummy_column

==================
DataSets
Number of Named Columns: 1
* Column Name: ColumnSchemaKey(column="dummy_column", layout="flat")
Num Data Pieces: 3
Details:
- column_layout: flat
- column_type: ndarray
- schema_hasher_tcode: 1
- data_hasher_tcode: 0
- schema_type: fixed_shape
- shape: (3, 2)
- dtype: float64
- backend: 01
- backend_options: {'complib': 'blosc:lz4hc', 'complevel': 5, 'shuffle': 'byte'}

4.6.3 Quick Start - with explanations

66 Chapter 4. Development

Hangar, Release 0.5.2

1. Create and initialize a Repository

Central to Hangar is the concept of Repository.

A Repository consists of an historically ordered mapping of Commits over time by various Committers across
any number of Branches. Though there are many conceptual similarities in what a Git repo and a Hangar repository
achieve, Hangar is designed with the express purpose of dealing with numeric data.

To start using Hangar programmatically, simply begin with this import statement:

[1]: from hangar import Repository

Create the folder where you want to store the Repository:

[2]: !mkdir /Volumes/Archivio/tensorwerk/hangar/quick-start

Initialize the Repository object by saying where your repository should live.

Note: Note that if you feed a path to the Repository which does not contain a pre-initialized Hangar repo, Python
shows you a warning saying that you will need to initialize the repo before starting working on it.

[3]: repo = Repository(path="/Volumes/Archivio/tensorwerk/hangar/quick-start")

//anaconda/envs/hangar-tutorial/lib/python3.8/site-packages/hangar/context.py:92:
→˓UserWarning: No repository exists at /Volumes/Archivio/tensorwerk/hangar/quick-
→˓start/.hangar, please use `repo.init()` method
warnings.warn(msg, UserWarning)

Initialize the Repository providing your name and your email.

Warning: Please be aware that the remove_old parameter set to True removes and reinitializes a Hangar
repository at the given path.

[4]: repo.init(
user_name="Alessia Marcolini", user_email="alessia@tensorwerk.com", remove_

→˓old=True
)

Hangar Repo initialized at: /Volumes/Archivio/tensorwerk/hangar/quick-start/.hangar

[4]: '/Volumes/Archivio/tensorwerk/hangar/quick-start/.hangar'

2. Open the Staging Area for Writing

To start interacting with Hangar, first you need to check out the Repository you want to work on.

A repo can be checked out in two modes:

• write-enabled

• read-only

We need to check out the repo in write mode in order to initialize the columns and write into them.

[5]: master_checkout = repo.checkout(write=True)
master_checkout

4.6. Hangar Tutorial 67

Hangar, Release 0.5.2

[5]: Hangar WriterCheckout
Writer : True
Base Branch : master
Num Columns : 0

A checkout allows access to columns. The columns attribute of a checkout provide the interface to working with
all of the data on disk!

[6]: master_checkout.columns

[6]: Hangar Columns
Writeable : True
Number of Columns : 0
Column Names / Partial Remote References:

-

3. Create some random data to play with

Let’s create a random array to be used as a dummy example:

[7]: import numpy as np

dummy = np.random.rand(3,2)
dummy

[7]: array([[0.54631485, 0.26578857],
[0.74990074, 0.41764666],
[0.75884524, 0.05547267]])

4. Initialize a column

With checkout write-enabled, we can now initialize a new column of the repository using the method
add_ndarray_column().

All samples within a column have the same data type, and number of dimensions. The size of each dimension can be
either fixed (the default behavior) or variable per sample.

You will need to provide a column name and a prototype, so Hangar can infer the shape of the elements contained in
the array. dummy_col will become a column accessor object.

[8]: dummy_col = master_checkout.add_ndarray_column(name="dummy_column", prototype=dummy)
dummy_col

[8]: Hangar FlatSampleWriter
Column Name : dummy_column
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : float64
Shape : (3, 2)
Number of Samples : 0
Partial Remote Data Refs : False

Verify we successfully added the new column:

68 Chapter 4. Development

Hangar, Release 0.5.2

[9]: master_checkout.columns

[9]: Hangar Columns
Writeable : True
Number of Columns : 1
Column Names / Partial Remote References:

- dummy_column / False

5. Add data

To add data to a named column, we can use dict-style mode as follows. Sample keys can be either str or int type.

[10]: dummy_col[0] = dummy

As we can see, Number of Samples is equal to 1 now!

[11]: dummy_col

[11]: Hangar FlatSampleWriter
Column Name : dummy_column
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : float64
Shape : (3, 2)
Number of Samples : 1
Partial Remote Data Refs : False

[12]: dummy_col[1] = np.random.rand(3,2)

[13]: dummy_col

[13]: Hangar FlatSampleWriter
Column Name : dummy_column
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : float64
Shape : (3, 2)
Number of Samples : 2
Partial Remote Data Refs : False

[14]: dummy_col[1]

[14]: array([[0.17590758, 0.26950355],
[0.88036219, 0.7839301],
[0.87321484, 0.04316646]])

You can also iterate over your column, as you would do with a regular Python dictionary:

[15]: for key, value in dummy_col.items():
print('Key:', key)

(continues on next page)

4.6. Hangar Tutorial 69

Hangar, Release 0.5.2

(continued from previous page)

print('Value:', value)
print()

Key: 0
Value: [[0.54631485 0.26578857]
[0.74990074 0.41764666]
[0.75884524 0.05547267]]

Key: 1
Value: [[0.17590758 0.26950355]
[0.88036219 0.7839301]
[0.87321484 0.04316646]]

How many samples are in the column?

[16]: len(dummy_col)

[16]: 2

Does the column contain that key?

[17]: 0 in dummy_col

[17]: True

[18]: 5 in dummy_col

[18]: False

6. Commit changes

Once you have made a set of changes you want to commit, just simply call the commit() method (and pass in a
message)!

[19]: master_checkout.commit("Add dummy_column with 2 samples")

[19]: 'a=4f42fce2b66476271f149e3cd2eb4c6ba66daeee'

Let’s add another sample in the column:

[20]: dummy_col[2] = np.random.rand(3,2)
dummy_col

[20]: Hangar FlatSampleWriter
Column Name : dummy_column
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : float64
Shape : (3, 2)
Number of Samples : 3
Partial Remote Data Refs : False

Number of Samples is equal to 3 now and we want to keep track of the change with another commit:

70 Chapter 4. Development

Hangar, Release 0.5.2

[21]: master_checkout.commit("Add one more sample to dummy_column")

[21]: 'a=753e28e27d4b23a0dca0633f90b4513538a98c40'

To view the history of your commits:

[22]: master_checkout.log()

* a=753e28e27d4b23a0dca0633f90b4513538a98c40 (master) : Add one more sample to dummy_
→˓column

* a=4f42fce2b66476271f149e3cd2eb4c6ba66daeee : Add dummy_column with 2 samples

Do not forget to close the write-enabled checkout!

[23]: master_checkout.close()

Check the state of the repository and get useful information about disk usage, the columns you have and the last
commit:

[24]: repo.summary()

Summary of Contents Contained in Data Repository

==================
Repository Info
Base Directory: /Volumes/Archivio/tensorwerk/hangar/quick-start
Disk Usage: 237.53 kB

===================
Commit Details
Commit: a=753e28e27d4b23a0dca0633f90b4513538a98c40
Created: Tue Apr 21 21:50:15 2020
By: Alessia Marcolini
Email: alessia@tensorwerk.com
Message: Add one more sample to dummy_column

==================
DataSets
Number of Named Columns: 1
* Column Name: ColumnSchemaKey(column="dummy_column", layout="flat")
Num Data Pieces: 3
Details:
- column_layout: flat
- column_type: ndarray
- schema_hasher_tcode: 1
- data_hasher_tcode: 0
- schema_type: fixed_shape
- shape: (3, 2)
- dtype: float64
- backend: 01
- backend_options: {'complib': 'blosc:lz4hc', 'complevel': 5, 'shuffle': 'byte'}

4.6. Hangar Tutorial 71

Hangar, Release 0.5.2

4.6.4 Part 1: Creating A Repository And Working With Data

Warning: The usage info displayed in the latest build of the project documentation do not reflect recent
changes to the API and internal structure of the project. They should not be relied on at the current moment; they
will be updated over the next weeks, and will be in line before the next release.

This tutorial will review the first steps of working with a hangar repository.

To fit with the beginner’s theme, we will use the MNIST dataset. Later examples will show off how to work with much
more complex data.

[1]: from hangar import Repository

import numpy as np
import pickle
import gzip
import matplotlib.pyplot as plt

from tqdm import tqdm

Creating & Interacting with a Hangar Repository

Hangar is designed to “just make sense” in every operation you have to perform. As such, there is a single interface
which all interaction begins with: the designed to “just make sense” in every operation you have to perform. As such,
there is a single interface which all interaction begins with: the Repository object.

Whether a hangar repository exists at the path you specify or not, just tell hangar where it should live!

Intitializing a repository

The first time you want to work with a new repository, the repository init() method must be called. This is where you
provide Hangar with your name and email address (to be used in the commit log), as well as implicitly confirming that
you do want to create the underlying data files hangar uses on disk.

[2]: repo = Repository(path='/Users/rick/projects/tensorwerk/hangar/dev/mnist/')

First time a repository is accessed only!
Note: if you feed a path to the `Repository` which does not contain a pre-
→˓initialized hangar repo,
when the Repository object is initialized it will let you know that you need to run
→˓`init()`

repo.init(user_name='Rick Izzo', user_email='rick@tensorwerk.com', remove_old=True)

Hangar Repo initialized at: /Users/rick/projects/tensorwerk/hangar/dev/mnist/.hangar

[2]: '/Users/rick/projects/tensorwerk/hangar/dev/mnist/.hangar'

Checking out the repo for writing

A repository can be checked out in two modes:

72 Chapter 4. Development

Hangar, Release 0.5.2

1. write-enabled: applies all operations to the staging area’s current state. Only one write-enabled checkout can
be active at a different time, must be closed upon last use, or manual intervention will be needed to remove the
writer lock.

2. read-only: checkout a commit or branch to view repository state as it existed at that point in time.

Lots of useful information is in the iPython __repr__

If you’re ever in doubt about what the state of the object your working on is, just call its reps, and the most relevant
information will be sent to your screen!

[3]: co = repo.checkout(write=True)
co

[3]: Hangar WriterCheckout
Writer : True
Base Branch : master
Num Columns : 0

A checkout allows access to columns and metadata

The columns and metadata attributes of a checkout provide the interface to working with all of the data on disk!

[4]: co.columns

[4]: Hangar Columns
Writeable : True
Number of Columns : 0
Column Names / Partial Remote References:

-

[5]: co.metadata

[5]: Hangar Metadata
Writeable: True
Number of Keys: 0

Before data can be added to a repository, a column must be initialized.

We’re going to first load up a the MNIST pickled dataset so it can be added to the repo!

[6]: # Load the dataset
with gzip.open('/Users/rick/projects/tensorwerk/hangar/dev/data/mnist.pkl.gz', 'rb')
→˓as f:

train_set, valid_set, test_set = pickle.load(f, encoding='bytes')

def rescale(array):
array = array * 256
rounded = np.round(array)
return rounded.astype(np.uint8())

sample_trimg = rescale(train_set[0][0])

(continues on next page)

4.6. Hangar Tutorial 73

Hangar, Release 0.5.2

(continued from previous page)

sample_trlabel = np.array([train_set[1][0]])
trimgs = rescale(train_set[0])
trlabels = train_set[1]

Before data can be added to a repository, a column must be initialized.

An “Column” is a named grouping of data samples where each sample shares a number of similar attributes and array
properties.

See the docstrings below or in add_ndarray_column()

WriterCheckout.add_ndarray_column(name: str, shape: Union[int, tuple, None] = None,
dtype: Optional[numpy.dtype] = None, prototype: Op-
tional[numpy.ndarray] = None, variable_shape: bool =
False, contains_subsamples: bool = False, *, backend:
Optional[str] = None, backend_options: Optional[dict] =
None)

Initializes a numpy.ndarray container column.

Columns are created in order to store some arbitrary collection of data pieces. In this case, we store numpy.
ndarray data. Items need not be related to each-other in any direct capacity; the only criteria hangar requires
is that all pieces of data stored in the column have a compatible schema with each-other (more on this below).
Each piece of data is indexed by some key (either user defined or automatically generated depending on the
user’s preferences). Both single level stores (sample keys mapping to data on disk) and nested stores (where
some sample key maps to an arbitrary number of subsamples, in turn each pointing to some piece of store data
on disk) are supported.

All data pieces within a column have the same data type and number of dimensions. The size of each dimension
can be either fixed (the default behavior) or variable per sample. For fixed dimension sizes, all data pieces
written to the column must have the same shape & size which was specified at the time the column column
was initialized. Alternatively, variable sized columns can write data pieces with dimensions of any size (up to a
specified maximum).

Parameters

• name (str) – The name assigned to this column.

• shape (Optional[Union[int, Tuple[int]]]) – The shape of the data samples
which will be written in this column. This argument and the dtype argument are required if
a prototype is not provided, defaults to None.

• dtype (Optional[numpy.dtype]) – The datatype of this column. This argument and the
shape argument are required if a prototype is not provided., defaults to None.

• prototype (Optional[numpy.ndarray]) – A sample array of correct datatype and
shape which will be used to initialize the column storage mechanisms. If this is provided,
the shape and dtype arguments must not be set, defaults to None.

• variable_shape (bool, optional) – If this is a variable sized column. If true, a
the maximum shape is set from the provided shape or prototype argument. Any sample
added to the column can then have dimension sizes <= to this initial specification (so long
as they have the same rank as what was specified) defaults to False.

• contains_subsamples (bool, optional) – True if the column column should
store data in a nested structure. In this scheme, a sample key is used to index an arbitrary
number of subsamples which map some (sub)key to some piece of data. If False, sample

74 Chapter 4. Development

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Hangar, Release 0.5.2

keys map directly to a single piece of data; essentially acting as a single level key/value
store. By default, False.

• backend (Optional[str], optional) – ADVANCED USERS ONLY, backend
format code to use for column data. If None, automatically inferred and set based on data
shape and type. by default None

• backend_options (Optional[dict], optional) – ADVANCED USERS
ONLY, filter opts to apply to column data. If None, automatically inferred and set based
on data shape and type. by default None

Returns instance object of the initialized column.

Return type Columns

WriterCheckout.add_str_column(name: str, contains_subsamples: bool = False, *, backend: Op-
tional[str] = None, backend_options: Optional[dict] = None)

Initializes a str container column

Columns are created in order to store some arbitrary collection of data pieces. In this case, we store str data.
Items need not be related to each-other in any direct capacity; the only criteria hangar requires is that all pieces
of data stored in the column have a compatible schema with each-other (more on this below). Each piece of data
is indexed by some key (either user defined or automatically generated depending on the user’s preferences).
Both single level stores (sample keys mapping to data on disk) and nested stores (where some sample key maps
to an arbitrary number of subsamples, in turn each pointing to some piece of store data on disk) are supported.

All data pieces within a column have the same data type. For str columns, there is no distinction between
'variable_shape' and 'fixed_shape' schema types. Values are allowed to take on a value of any size
so long as the datatype and contents are valid for the schema definition.

Parameters

• name (str) – Name assigned to the column

• contains_subsamples (bool, optional) – True if the column column should
store data in a nested structure. In this scheme, a sample key is used to index an arbitrary
number of subsamples which map some (sub)key to a piece of data. If False, sample keys
map directly to a single piece of data; essentially acting as a single level key/value store. By
default, False.

• backend (Optional[str], optional) – ADVANCED USERS ONLY, backend
format code to use for column data. If None, automatically inferred and set based on data
shape and type. by default None

• backend_options (Optional[dict], optional) – ADVANCED USERS
ONLY, filter opts to apply to column data. If None, automatically inferred and set based
on data shape and type. by default None

Returns instance object of the initialized column.

Return type Columns

[7]: col = co.add_ndarray_column(name='mnist_training_images', prototype=trimgs[0])

[8]: col

[8]: Hangar FlatSampleWriter
Column Name : mnist_training_images
Writeable : True
Column Type : ndarray
Column Layout : flat

(continues on next page)

4.6. Hangar Tutorial 75

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Hangar, Release 0.5.2

(continued from previous page)

Schema Type : fixed_shape
DType : uint8
Shape : (784,)
Number of Samples : 0
Partial Remote Data Refs : False

Interaction

Through columns attribute

When a column is initialized, a column accessor object will be returned, however, depending on your use case, this
may or may not be the most convenient way to access a arrayset.

In general, we have implemented a full dict mapping interface on top of all objects. To access the
'mnist_training_images' arrayset you can just use a dict style access like the following (note: if operating in
iPython/Jupyter, the arrayset keys will autocomplete for you).

The column objects returned here contain many useful instrospecion methods which we will review over the rest of
the tutorial.

[9]: co.columns['mnist_training_images']

[9]: Hangar FlatSampleWriter
Column Name : mnist_training_images
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : uint8
Shape : (784,)
Number of Samples : 0
Partial Remote Data Refs : False

[10]: train_aset = co.columns['mnist_training_images']

OR an equivalent way using the `.get()` method

train_aset = co.columns.get('mnist_training_images')
train_aset

[10]: Hangar FlatSampleWriter
Column Name : mnist_training_images
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : uint8
Shape : (784,)
Number of Samples : 0
Partial Remote Data Refs : False

76 Chapter 4. Development

Hangar, Release 0.5.2

Through the checkout object (arrayset and sample access)

In addition to the standard co.columns access methods, we have implemented a convenience mapping to columns
and samples / subsamples (ie. data) for both reading and writing from the checkout object itself.

To get the same arrayset object from the checkout, simply use:

[11]: train_asets = co['mnist_training_images']
train_asets

[11]: Hangar FlatSampleWriter
Column Name : mnist_training_images
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : uint8
Shape : (784,)
Number of Samples : 0
Partial Remote Data Refs : False

Though that works as expected, most use cases will take advantage of adding and reading data from multiple columns
/ samples at a time. This is shown in the next section.

Adding Data

To add data to a named arrayset, we can use dict-style setting (refer to the __setitem__, __getitem__, and
__delitem__ methods), or the update() method. Sample keys can be either str or int type.

[12]: train_aset['0'] = trimgs[0]

data = {
'1': trimgs[1],
'2': trimgs[2],

}
train_aset.update(data)

train_aset[51] = trimgs[51]

Using the checkout method

[13]: co['mnist_training_images', 60] = trimgs[60]

How many samples are in the arrayset?

[14]: len(train_aset)

[14]: 5

4.6. Hangar Tutorial 77

Hangar, Release 0.5.2

Containment Testing

[15]: 'hi' in train_aset

[15]: False

[16]: '0' in train_aset

[16]: True

[17]: 60 in train_aset

[17]: True

Dictionary Style Retrieval for known keys

[18]: out1 = train_aset['0']
OR
out2 = co['mnist_training_images', '0']

print(np.allclose(out1, out2))

plt.imshow(out1.reshape(28, 28))

True

[18]: <matplotlib.image.AxesImage at 0x3703cc7f0>

Dict style iteration supported out of the box

[19]: # iterate normally over keys

for k in train_aset:
equivalent method: for k in train_aset.keys():
print(k)

iterate over items (plot results)

(continues on next page)

78 Chapter 4. Development

Hangar, Release 0.5.2

(continued from previous page)

fig, axs = plt.subplots(nrows=1, ncols=5, figsize=(10, 10))

for idx, v in enumerate(train_aset.values()):
axs[idx].imshow(v.reshape(28, 28))

plt.show()

iterate over items, store k, v in dict

myDict = {}
for k, v in train_aset.items():

myDict[k] = v

0
1
2
51
60

Performance

Once you’ve completed an interactive exploration, be sure to use the context manager form of the update() and get()
methods!

In order to make sure that all your data is always safe in Hangar, the backend diligently ensures that all contexts
(operations which can somehow interact with the record structures) are opened and closed appropriately. When you
use the context manager form of a arrayset object, we can offload a significant amount of work to the python runtime,
and dramatically increase read and write speeds.

Most columns we’ve tested see an increased throughput differential of 250% - 500% for writes and 300% - 600% for
reads when comparing using the context manager form vs the naked form!

[23]: import time

----------------- Non Context Manager Form ----------------------

co = repo.checkout(write=True)
aset_trimgs = co.add_ndarray_column(name='train_images', prototype=sample_trimg)
aset_trlabels = co.add_ndarray_column(name='train_labels', prototype=sample_trlabel)

print(f'Beginning non-context manager form')
print('----------------------------------')
start_time = time.time()

for idx, img in enumerate(trimgs):
aset_trimgs[idx] = img

(continues on next page)

4.6. Hangar Tutorial 79

Hangar, Release 0.5.2

(continued from previous page)

aset_trlabels[idx] = np.array([trlabels[idx]])

print(f'Finished non-context manager form in: {time.time() - start_time} seconds')

co.reset_staging_area()
co.close()

----------------- Context Manager Form --------------------------

co = repo.checkout(write=True)
aset_trimgs = co.add_ndarray_column(name='train_images', prototype=sample_trimg)
aset_trlabels = co.add_ndarray_column(name='train_labels', prototype=sample_trlabel)

print(f'\nBeginning context manager form')
print('--------------------------------')
start_time = time.time()

with aset_trimgs, aset_trlabels:
for idx, img in enumerate(trimgs):

aset_trimgs[idx] = img
aset_trlabels[idx] = np.array([trlabels[idx]])

print(f'Finished context manager form in: {time.time() - start_time} seconds')

co.reset_staging_area()
co.close()

print(f'Finished context manager with checkout form in: {time.time() - start_time}
→˓seconds')

Beginning non-context manager form

Finished non-context manager form in: 78.54769086837769 seconds
Hard reset requested with writer_lock: 8910b50e-1f9d-4cb1-986c-b99ea84c8a54

Beginning context manager form

Finished context manager form in: 11.608536720275879 seconds
Hard reset requested with writer_lock: ad4a2ef9-8494-49f8-84ef-40c3990b1e9b

Clearly, the context manager form is far and away superior, however we fell that for the purposes of interactive use
that the “Naked” form is valubal to the average user!

Commiting Changes

Once you have made a set of changes you want to commit, just simply call the commit() method (and pass in a
message)!

[25]: co.commit('hello world, this is my first hangar commit')

[25]: 'a=8eb01eaf0c657f8526dbf9a8ffab0a4606ebfd3b'

The returned value ('e11d061dc457b361842801e24cbd119a745089d6') is the commit hash of this com-
mit. It may be useful to assign this to a variable and follow this up by creating a branch from this commit!

80 Chapter 4. Development

Hangar, Release 0.5.2

Don’t Forget to Close the Write-Enabled Checkout to Release the Lock!

We mentioned in Checking out the repo for writing that when a write-enabled checkout is cre-
ated, it places a lock on writers until it is closed. If for whatever reason the program terminates via a non python
SIGKILL or fatal interpreter error without closing the write-enabled checkout, this lock will persist (forever techni-
cally, but realistically until it is manually freed).

Luckily, preventing this issue from occurring is as simple as calling close()!

If you forget, normal interperter shutdown should trigger an atexit hook automatically, however this behavior
should not be relied upon. Is better to just call close().

[26]: co.close()

But if you did forget, and you recieve a PermissionError next time you open a checkout

PermissionError: Cannot acquire the writer lock. Only one instance of
a writer checkout can be active at a time. If the last checkout of this
repository did not properly close, or a crash occured, the lock must be
manually freed before another writer can be instantiated.

You can manually free the lock with the following method. However!

This is a dangerous operation, and it’s one of the only ways where a user can put data in their repository at risk! If
another python process is still holding the lock, do NOT force the release. Kill the process (that’s totally fine to do at
any time, then force the lock release).

[27]: repo.force_release_writer_lock()

[27]: True

Reading Data

Two different styles of access are considered below, In general, the contex manager form if recomended (though
marginal performance improvements are expected to be seen at best)

[29]: co = repo.checkout()

trlabel_col = co['train_labels']
trimg_col = co['train_images']

print(f'\nBegining Key Iteration')
print('-----------------------')
start = time.time()

for idx in trimg_col.keys():
image_data = trimg_col[idx]
label_data = trlabel_col[idx]

print(f'completed in {time.time() - start} sec')

print(f'\nBegining Items Iteration with Context Manager')
print('---')
start = time.time()

(continues on next page)

4.6. Hangar Tutorial 81

Hangar, Release 0.5.2

(continued from previous page)

with trlabel_col, trimg_col:
for index, image_data in trimg_col.items():

label_data = trlabel_col[index]

print(f'completed in {time.time() - start} sec')

co.close()

Neither BRANCH or COMMIT specified.

* Checking out writing HEAD BRANCH: master

Begining Key Iteration

completed in 5.838773965835571 sec

Begining Items Iteration with Context Manager

completed in 5.516948938369751 sec

Inspecting state from the top!

After your first commit, the summary and log methods will begin to work, and you can either print the stream to the
console (as shown below), or you can dig deep into the internal of how hangar thinks about your data! (To be covered
in an advanced tutorial later on).

The point is, regardless of your level of interaction with a live hangar repository, all level of state is accessable from
the top, and in general has been built to be the only way to directly access it!

[30]: repo.summary()

Summary of Contents Contained in Data Repository

==================
Repository Info
Base Directory: /Users/rick/projects/tensorwerk/hangar/dev/mnist
Disk Usage: 57.29 MB

===================
Commit Details
Commit: a=8eb01eaf0c657f8526dbf9a8ffab0a4606ebfd3b
Created: Tue Feb 25 19:03:06 2020
By: Rick Izzo
Email: rick@tensorwerk.com
Message: hello world, this is my first hangar commit

==================
DataSets
Number of Named Columns: 2
* Column Name: ColumnSchemaKey(column="train_images", layout="flat")
Num Data Pieces: 50000
Details:

(continues on next page)

82 Chapter 4. Development

Hangar, Release 0.5.2

(continued from previous page)

| - column_layout: flat
| - column_type: ndarray
| - schema_type: fixed_shape
| - shape: (784,)
| - dtype: uint8
| - backend: 00
| - backend_options: {'complib': 'blosc:lz4hc', 'complevel': 5, 'shuffle': 'byte'}
|
| * Column Name: ColumnSchemaKey(column="train_labels", layout="flat")
| Num Data Pieces: 50000
| Details:
| - column_layout: flat
| - column_type: ndarray
| - schema_type: fixed_shape
| - shape: (1,)
| - dtype: int64
| - backend: 10
| - backend_options: {}

==================
Metadata:
Number of Keys: 0

[31]: repo.log()

* a=8eb01eaf0c657f8526dbf9a8ffab0a4606ebfd3b (master) : hello world, this is my first
→˓hangar commit

4.6.5 Part 2: Checkouts, Branching, & Merging

Warning: The usage info displayed in the latest build of the project documentation do not reflect recent
changes to the API and internal structure of the project. They should not be relied on at the current moment; they
will be updated over the next weeks, and will be in line before the next release.

This section deals with navigating repository history, creating & merging branches, and understanding conflicts.

The Hangar Workflow

The hangar workflow is intended to mimic common git workflows in which small incremental changes are made and
committed on dedicated topic branches. After the topic has been adequatly set, topic branch is merged into a
separate branch (commonly referred to as master, though it need not to be the actual branch named "master"),
where well vetted and more permanent changes are kept.

Create Branch -> Checkout Branch -> Make Changes -> Commit

Making the Initial Commit

Let’s initialize a new repository and see how branching works in Hangar:

4.6. Hangar Tutorial 83

Hangar, Release 0.5.2

[1]: from hangar import Repository
import numpy as np

[2]: repo = Repository(path='/Users/rick/projects/tensorwerk/hangar/dev/mnist/')

[3]: repo_pth = repo.init(user_name='Test User', user_email='test@foo.com', remove_
→˓old=True)

Hangar Repo initialized at: /Users/rick/projects/tensorwerk/hangar/dev/mnist/.hangar

When a repository is first initialized, it has no history, no commits.

[4]: repo.log() # -> returns None

Though the repository is essentially empty at this point in time, there is one thing which is present: a branch with the
name: "master".

[5]: repo.list_branches()

[5]: ['master']

This "master" is the branch we make our first commit on; until we do, the repository is in a semi-unstable state;
with no history or contents, most of the functionality of a repository (to store, retrieve, and work with versions of data
across time) just isn’t possible. A significant portion of otherwise standard operations will generally flat out refuse to
execute (ie. read-only checkouts, log, push, etc.) until the first commit is made.

One of the only options available at this point is to create a write-enabled checkout on the "master" branch and to
begin to add data so we can make a commit. Let’s do that now:

[6]: co = repo.checkout(write=True)

As expected, there are no columns nor metadata samples recorded in the checkout.

[7]: print(f'number of metadata keys: {len(co.metadata)}')
print(f'number of columns: {len(co.columns)}')

number of metadata keys: 0
number of columns: 0

Let’s add a dummy array just to put something in the repository history to commit. We’ll then close the checkout so
we can explore some useful tools which depend on having at least one historical record (commit) in the repo.

[8]: dummy = np.arange(10, dtype=np.uint16)
col = co.add_ndarray_column('dummy_column', prototype=dummy)
col['0'] = dummy
initialCommitHash = co.commit('first commit with a single sample added to a dummy
→˓column')
co.close()

If we check the history now, we can see our first commit hash, and that it is labeled with the branch name "master"

[9]: repo.log()

* a=eaee002ed9c6e949c3657bd50e3949d6a459d50e (master) : first commit with a single
→˓sample added to a dummy column

So now our repository contains: - A commit: a fully independent description of the entire repository state as it existed
at some point in time. A commit is identified by a commit_hash. - A branch: a label pointing to a particular
commit / commit_hash.

84 Chapter 4. Development

Hangar, Release 0.5.2

Once committed, it is not possible to remove, modify, or otherwise tamper with the contents of a commit in any way.
It is a permanent record, which Hangar has no method to change once written to disk.

In addition, as a commit_hash is not only calculated from the commit ’s contents, but from the commit_hash
of its parents (more on this to follow), knowing a single top-level commit_hash allows us to verify the integrity of
the entire repository history. This fundamental behavior holds even in cases of disk-corruption or malicious use.

Working with Checkouts & Branches

As mentioned in the first tutorial, we work with the data in a repository through a checkout. There are two types of
checkouts (each of which have different uses and abilities):

‘Checking out a branch / commit for reading: <api.rst#read-only-checkout>‘__ is the process of retrieving records
describing repository state at some point in time, and setting up access to the referenced data.

• Any number of read checkout processes can operate on a repository (on any number of commits) at the same
time.

‘Checking out a branch for writing: <api.rst#write-enabled-checkout>‘__ is the process of setting up a (mutable)
staging area to temporarily gather record references / data before all changes have been made and staging area
contents are committed in a new permanent record of history (a commit).

• Only one write-enabled checkout can ever be operating in a repository at a time.

• When initially creating the checkout, the staging area is not actually “empty”. Instead, it has the full
contents of the last commit referenced by a branch’s HEAD. These records can be removed / mutated / added to
in any way to form the next commit. The new commit retains a permanent reference identifying the previous
HEAD commit was used as its base staging area.

• On commit, the branch which was checked out has its HEAD pointer value updated to the new commit’s
commit_hash. A write-enabled checkout starting from the same branch will now use that commit’s record
content as the base for its staging area.

Creating a branch

A branch is an individual series of changes / commits which diverge from the main history of the repository at some
point in time. All changes made along a branch are completely isolated from those on other branches. After some
point in time, changes made in a disparate branches can be unified through an automatic merge process (described
in detail later in this tutorial). In general, the Hangar branching model is semantically identical to the Git one; The
one exception is that in Hangar, a branch must always have a name and a base_commit. (No “Detached HEAD
state” is possible for a write-enabled checkout). If No base_commit is specified, the current writer branch
HEAD commit is used as the base_commit hash for the branch automatically.

Hangar branches have the same lightweight and performant properties which make working with Git branches so
appealing - they are cheap and easy to use, create, and discard (if necessary).

To create a branch, use the create_branch() method.

[10]: branch_1 = repo.create_branch(name='testbranch')

[11]: branch_1

[11]: BranchHead(name='testbranch', digest='a=eaee002ed9c6e949c3657bd50e3949d6a459d50e')

We use the list_branches() and log() methods to see that a new branch named testbranch has been created and is
indeed pointing to our initial commit.

4.6. Hangar Tutorial 85

Hangar, Release 0.5.2

[12]: print(f'branch names: {repo.list_branches()} \n')
repo.log()

branch names: ['master', 'testbranch']

* a=eaee002ed9c6e949c3657bd50e3949d6a459d50e (master) (testbranch) : first commit
→˓with a single sample added to a dummy column

If instead, we actually specify the base commit (with a different branch name) we see we do actually get a third branch.
pointing to the same commit as master and testbranch

[13]: branch_2 = repo.create_branch(name='new', base_commit=initialCommitHash)

[14]: branch_2

[14]: BranchHead(name='new', digest='a=eaee002ed9c6e949c3657bd50e3949d6a459d50e')

[15]: repo.log()

* a=eaee002ed9c6e949c3657bd50e3949d6a459d50e (master) (new) (testbranch) : first
→˓commit with a single sample added to a dummy column

Making changes on a branch

Let’s make some changes on the new branch to see how things work.

We can see that the data we added previously is still here (dummy arrayset containing one sample labeled 0).

[16]: co = repo.checkout(write=True, branch='new')

[17]: co.columns

[17]: Hangar Columns
Writeable : True
Number of Columns : 1
Column Names / Partial Remote References:

- dummy_column / False

[18]: co.columns['dummy_column']

[18]: Hangar FlatSampleWriter
Column Name : dummy_column
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : uint16
Shape : (10,)
Number of Samples : 1
Partial Remote Data Refs : False

[19]: co.columns['dummy_column']['0']

[19]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint16)

Let’s add another sample to the dummy_arrayset called 1

86 Chapter 4. Development

Hangar, Release 0.5.2

[20]: arr = np.arange(10, dtype=np.uint16)
let's increment values so that `0` and `1` aren't set to the same thing
arr += 1

co['dummy_column', '1'] = arr

We can see that in this checkout, there are indeed two samples in the dummy_arrayset:

[21]: len(co.columns['dummy_column'])

[21]: 2

That’s all, let’s commit this and be done with this branch.

[22]: co.commit('commit on `new` branch adding a sample to dummy_arrayset')
co.close()

How do changes appear when made on a branch?

If we look at the log, we see that the branch we were on (new) is a commit ahead of master and testbranch

[23]: repo.log()

* a=c1cf1bd6863ed0b95239d2c9e1a6c6cc65569e94 (new) : commit on `new` branch adding a
→˓sample to dummy_arrayset

* a=eaee002ed9c6e949c3657bd50e3949d6a459d50e (master) (testbranch) : first commit
→˓with a single sample added to a dummy column

The meaning is exactly what one would intuit. We made some changes, they were reflected on the new branch, but
the master and testbranch branches were not impacted at all, nor were any of the commits!

Merging (Part 1) Fast-Forward Merges

Say we like the changes we made on the new branch so much that we want them to be included into our master
branch! How do we make this happen for this scenario??

Well, the history between the HEAD of the new and the HEAD of the master branch is perfectly linear. In fact, when
we began making changes on new, our staging area was identical to what the master HEAD commit references are
right now!

If you’ll remember that a branch is just a pointer which assigns some name to a commit_hash, it becomes apparent
that a merge in this case really doesn’t involve any work at all. With a linear history between master and new, any
commits exsting along the path between the HEAD of new and master are the only changes which are introduced,
and we can be sure that this is the only view of the data records which can exist!

What this means in practice is that for this type of merge, we can just update the HEAD of master to point to the
HEAD of "new", and the merge is complete.

This situation is referred to as a Fast Forward (FF) Merge. A FF merge is safe to perform any time a linear history
lies between the HEAD of some topic and base branch, regardless of how many commits or changes which were
introduced.

For other situations, a more complicated Three Way Merge is required. This merge method will be explained a bit
more later in this tutorial.

4.6. Hangar Tutorial 87

Hangar, Release 0.5.2

[24]: co = repo.checkout(write=True, branch='master')

Performing the Merge

In practice, you’ll never need to know the details of the merge theory explained above (or even remember it exists).
Hangar automatically figures out which merge algorithms should be used and then performed whatever calculations
are needed to compute the results.

As a user, merging in Hangar is a one-liner! just use the merge() method from a write-enabled checkout (shown
below), or the analogous methods method from the Repository Object repo.merge() (if not already working with a
write-enabled checkout object).

[25]: co.merge(message='message for commit (not used for FF merge)', dev_branch='new')

Selected Fast-Forward Merge Strategy

[25]: 'a=c1cf1bd6863ed0b95239d2c9e1a6c6cc65569e94'

Let’s check the log!

[26]: repo.log()

* a=c1cf1bd6863ed0b95239d2c9e1a6c6cc65569e94 (master) (new) : commit on `new` branch
→˓adding a sample to dummy_arrayset

* a=eaee002ed9c6e949c3657bd50e3949d6a459d50e (testbranch) : first commit with a
→˓single sample added to a dummy column

[27]: co.branch_name

[27]: 'master'

[28]: co.commit_hash

[28]: 'a=c1cf1bd6863ed0b95239d2c9e1a6c6cc65569e94'

[29]: co.columns['dummy_column']

[29]: Hangar FlatSampleWriter
Column Name : dummy_column
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : uint16
Shape : (10,)
Number of Samples : 2
Partial Remote Data Refs : False

As you can see, everything is as it should be!

[30]: co.close()

Making changes to introduce diverged histories

Let’s now go back to our testbranch branch and make some changes there so we can see what happens when
changes don’t follow a linear history.

88 Chapter 4. Development

Hangar, Release 0.5.2

[31]: co = repo.checkout(write=True, branch='testbranch')

[32]: co.columns

[32]: Hangar Columns
Writeable : True
Number of Columns : 1
Column Names / Partial Remote References:

- dummy_column / False

[33]: co.columns['dummy_column']

[33]: Hangar FlatSampleWriter
Column Name : dummy_column
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : uint16
Shape : (10,)
Number of Samples : 1
Partial Remote Data Refs : False

We will start by mutating sample 0 in dummy_arrayset to a different value

[34]: old_arr = co['dummy_column', '0']
new_arr = old_arr + 50
new_arr

[34]: array([50, 51, 52, 53, 54, 55, 56, 57, 58, 59], dtype=uint16)

[35]: co['dummy_column', '0'] = new_arr

Let’s make a commit here, then add some metadata and make a new commit (all on the testbranch branch).

[36]: co.commit('mutated sample `0` of `dummy_column` to new value')

[36]: 'a=fcd82f86e39b19c3e5351dda063884b5d2fda67b'

[37]: repo.log()

* a=fcd82f86e39b19c3e5351dda063884b5d2fda67b (testbranch) : mutated sample `0` of
→˓`dummy_column` to new value

* a=eaee002ed9c6e949c3657bd50e3949d6a459d50e : first commit with a single sample
→˓added to a dummy column

[38]: co.metadata['hello'] = 'world'

[39]: co.commit('added hellow world metadata')

[39]: 'a=69a08ca41ca1f5577fb0ffcf59d4d1585f614c4d'

[40]: co.close()

Looking at our history how, we see that none of the original branches reference our first commit anymore.

4.6. Hangar Tutorial 89

Hangar, Release 0.5.2

[41]: repo.log()

* a=69a08ca41ca1f5577fb0ffcf59d4d1585f614c4d (testbranch) : added hellow world
→˓metadata

* a=fcd82f86e39b19c3e5351dda063884b5d2fda67b : mutated sample `0` of `dummy_column`
→˓to new value

* a=eaee002ed9c6e949c3657bd50e3949d6a459d50e : first commit with a single sample
→˓added to a dummy column

We can check the history of the master branch by specifying it as an argument to the log() method.

[42]: repo.log('master')

* a=c1cf1bd6863ed0b95239d2c9e1a6c6cc65569e94 (master) (new) : commit on `new` branch
→˓adding a sample to dummy_arrayset

* a=eaee002ed9c6e949c3657bd50e3949d6a459d50e : first commit with a single sample
→˓added to a dummy column

Merging (Part 2) Three Way Merge

If we now want to merge the changes on testbranch into master, we can’t just follow a simple linear history;
the branches have diverged.

For this case, Hangar implements a Three Way Merge algorithm which does the following: - Find the most recent
common ancestor commit present in both the testbranch and master branches - Compute what changed be-
tween the common ancestor and each branch’s HEAD commit - Check if any of the changes conflict with each other
(more on this in a later tutorial) - If no conflicts are present, compute the results of the merge between the two sets
of changes - Create a new commit containing the merge results reference both branch HEADs as parents of the new
commit, and update the base branch HEAD to that new commit’s commit_hash

[43]: co = repo.checkout(write=True, branch='master')

Once again, as a user, the details are completely irrelevant, and the operation occurs from the same one-liner call we
used before for the FF Merge.

[44]: co.merge(message='merge of testbranch into master', dev_branch='testbranch')

Selected 3-Way Merge Strategy

[44]: 'a=002041fe8d8846b06f33842964904b627de55214'

If we now look at the log, we see that this has a much different look than before. The three way merge results in a
history which references changes made in both diverged branches, and unifies them in a single commit

[45]: repo.log()

* a=002041fe8d8846b06f33842964904b627de55214 (master) : merge of testbranch into
→˓master
|\
| * a=69a08ca41ca1f5577fb0ffcf59d4d1585f614c4d (testbranch) : added hellow world
→˓metadata
| * a=fcd82f86e39b19c3e5351dda063884b5d2fda67b : mutated sample `0` of `dummy_column`
→˓to new value

* | a=c1cf1bd6863ed0b95239d2c9e1a6c6cc65569e94 (new) : commit on `new` branch adding
→˓a sample to dummy_arrayset
|/

* a=eaee002ed9c6e949c3657bd50e3949d6a459d50e : first commit with a single sample
→˓added to a dummy column

90 Chapter 4. Development

Hangar, Release 0.5.2

Manually inspecting the merge result to verify it matches our expectations

dummy_arrayset should contain two arrays, key 1 was set in the previous commit originally made in new
and merged into master. Key 0 was mutated in testbranch and unchanged in master, so the update from
testbranch is kept.

There should be one metadata sample with they key hello and the value "world".

[46]: co.columns

[46]: Hangar Columns
Writeable : True
Number of Columns : 1
Column Names / Partial Remote References:

- dummy_column / False

[47]: co.columns['dummy_column']

[47]: Hangar FlatSampleWriter
Column Name : dummy_column
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : uint16
Shape : (10,)
Number of Samples : 2
Partial Remote Data Refs : False

[49]: co['dummy_column', ['0', '1']]

[49]: [array([50, 51, 52, 53, 54, 55, 56, 57, 58, 59], dtype=uint16),
array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=uint16)]

[50]: co.metadata

[50]: Hangar Metadata
Writeable: True
Number of Keys: 1

[51]: co.metadata['hello']

[51]: 'world'

The Merge was a success!

[52]: co.close()

Conflicts

Now that we’ve seen merging in action, the next step is to talk about conflicts.

4.6. Hangar Tutorial 91

Hangar, Release 0.5.2

How Are Conflicts Detected?

Any merge conflicts can be identified and addressed ahead of running a merge command by using the built in diff
tools. When diffing commits, Hangar will provide a list of conflicts which it identifies. In general these fall into 4
categories:

1. Additions in both branches which created new keys (samples / columns / metadata) with non-compatible values.
For samples & metadata, the hash of the data is compared, for columns, the schema specification is checked for
compatibility in a method custom to the internal workings of Hangar.

2. Removal in Master Commit/Branch & Mutation in Dev Commit / Branch. Applies for samples,
columns, and metadata identically.

3. Mutation in Dev Commit/Branch & Removal in Master Commit / Branch. Applies for samples,
columns, and metadata identically.

4. Mutations on keys of both branches to non-compatible values. For samples & metadata, the hash of the data is
compared; for columns, the schema specification is checked for compatibility in a method custom to the internal
workings of Hangar.

Let’s make a merge conflict

To force a conflict, we are going to checkout the new branch and set the metadata key hello to the value foo
conflict... BOO!. Then if we try to merge this into the testbranch branch (which set hello to a value of
world) we see how hangar will identify the conflict and halt without making any changes.

Automated conflict resolution will be introduced in a future version of Hangar, for now it is up to the user to manually
resolve conflicts by making any necessary changes in each branch before reattempting a merge operation.

[53]: co = repo.checkout(write=True, branch='new')

[54]: co.metadata['hello'] = 'foo conflict... BOO!'

[55]: co.commit ('commit on new branch to hello metadata key so we can demonstrate a
→˓conflict')

[55]: 'a=95896880b33fc06a3c2359a03408f07c87bcc8c0'

[56]: repo.log()

* a=95896880b33fc06a3c2359a03408f07c87bcc8c0 (new) : commit on new branch to hello
→˓metadata key so we can demonstrate a conflict

* a=c1cf1bd6863ed0b95239d2c9e1a6c6cc65569e94 : commit on `new` branch adding a sample
→˓to dummy_arrayset

* a=eaee002ed9c6e949c3657bd50e3949d6a459d50e : first commit with a single sample
→˓added to a dummy column

When we attempt the merge, an exception is thrown telling us there is a conflict!

[57]: co.merge(message='this merge should not happen', dev_branch='testbranch')

Selected 3-Way Merge Strategy

ValueError Traceback (most recent call last)
<ipython-input-57-1a98dce1852b> in <module>
----> 1 co.merge(message='this merge should not happen', dev_branch='testbranch')

(continues on next page)

92 Chapter 4. Development

Hangar, Release 0.5.2

(continued from previous page)

~/projects/tensorwerk/hangar/hangar-py/src/hangar/checkout.py in merge(self, message,
→˓dev_branch)

1027 dev_branch=dev_branch,
1028 repo_path=self._repo_path,

-> 1029 writer_uuid=self._writer_lock)
1030
1031 for asetHandle in self._columns.values():

~/projects/tensorwerk/hangar/hangar-py/src/hangar/merger.py in select_merge_
→˓algorithm(message, branchenv, stageenv, refenv, stagehashenv, master_branch, dev_
→˓branch, repo_path, writer_uuid)

136
137 except ValueError as e:

--> 138 raise e from None
139
140 finally:

~/projects/tensorwerk/hangar/hangar-py/src/hangar/merger.py in select_merge_
→˓algorithm(message, branchenv, stageenv, refenv, stagehashenv, master_branch, dev_
→˓branch, repo_path, writer_uuid)

133 refenv=refenv,
134 stagehashenv=stagehashenv,

--> 135 repo_path=repo_path)
136
137 except ValueError as e:

~/projects/tensorwerk/hangar/hangar-py/src/hangar/merger.py in _three_way_
→˓merge(message, master_branch, masterHEAD, dev_branch, devHEAD, ancestorHEAD,
→˓branchenv, stageenv, refenv, stagehashenv, repo_path)

260 if conflict.conflict is True:
261 msg = f'HANGAR VALUE ERROR:: Merge ABORTED with conflict:

→˓{conflict}'
--> 262 raise ValueError(msg) from None

263
264 with mEnv.begin(write=True) as txn:

ValueError: HANGAR VALUE ERROR:: Merge ABORTED with conflict: Conflicts(t1=[(b'l:hello
→˓', b'2=d8fa6800caf496e637d965faac1a033e4636c2e6')], t21=[], t22=[], t3=[],
→˓conflict=True)

Checking for Conflicts

Alternatively, use the diff methods on a checkout to test for conflicts before attempting a merge.

It is possible to diff between a checkout object and:

1. Another branch (diff.branch())

2. A specified commit (diff.commit())

3. Changes made in the staging area before a commit is made (diff.staged()) (for write-enabled checkouts
only.)

Or via the CLI status tool between the staging area and any branch/commit (only a human readable summary is
produced).

4.6. Hangar Tutorial 93

Hangar, Release 0.5.2

[58]: merge_results, conflicts_found = co.diff.branch('testbranch')

[59]: conflicts_found

[59]: Conflicts(t1=Changes(schema={}, samples=(), metadata=(MetadataRecordKey(key='hello'),
→˓)), t21=Changes(schema={}, samples=(), metadata=()), t22=Changes(schema={},
→˓samples=(), metadata=()), t3=Changes(schema={}, samples=(), metadata=()),
→˓conflict=True)

[60]: conflicts_found.t1.metadata

[60]: (MetadataRecordKey(key='hello'),)

The type codes for a Conflicts namedtuple such as the one we saw:

Conflicts(t1=('hello',), t21=(), t22=(), t3=(), conflict=True)

are as follow:

• t1: Addition of key in master AND dev with different values.

• t21: Removed key in master, mutated value in dev.

• t22: Removed key in dev, mutated value in master.

• t3: Mutated key in both master AND dev to different values.

• conflict: Bool indicating if any type of conflict is present.

To resolve, remove the conflict

[61]: del co.metadata['hello']
resolved conflict by removing hello key
co.commit('commit which removes conflicting metadata key')

[61]: 'a=e69ba8aeffc130c57d2ae0a8131c8ea59083cb62'

[62]: co.merge(message='this merge succeeds as it no longer has a conflict', dev_branch=
→˓'testbranch')

Selected 3-Way Merge Strategy

[62]: 'a=ef7ddf4a4a216315d929bd905e78866e3ad6e4fd'

We can verify that history looks as we would expect via the log!

[63]: repo.log()

* a=ef7ddf4a4a216315d929bd905e78866e3ad6e4fd (new) : this merge succeeds as it no
→˓longer has a conflict
|\

* | a=e69ba8aeffc130c57d2ae0a8131c8ea59083cb62 : commit which removes conflicting
→˓metadata key

* | a=95896880b33fc06a3c2359a03408f07c87bcc8c0 : commit on new branch to hello
→˓metadata key so we can demonstrate a conflict
| * a=69a08ca41ca1f5577fb0ffcf59d4d1585f614c4d (testbranch) : added hellow world
→˓metadata
| * a=fcd82f86e39b19c3e5351dda063884b5d2fda67b : mutated sample `0` of `dummy_column`
→˓to new value

(continues on next page)

94 Chapter 4. Development

Hangar, Release 0.5.2

(continued from previous page)

* | a=c1cf1bd6863ed0b95239d2c9e1a6c6cc65569e94 : commit on `new` branch adding a
→˓sample to dummy_arrayset
|/

* a=eaee002ed9c6e949c3657bd50e3949d6a459d50e : first commit with a single sample
→˓added to a dummy column

4.6.6 Part 3: Working With Remote Servers

Warning: The usage info displayed in the latest build of the project documentation do not reflect recent
changes to the API and internal structure of the project. They should not be relied on at the current moment; they
will be updated over the next weeks, and will be in line before the next release.

This tutorial will introduce how to start a remote Hangar server, and how to work with remotes from the client side.

Particular attention is paid to the concept of a *partially fetch* / *partial clone* operations. This is a key compo-
nent of the Hangar design which provides the ability to quickly and efficiently work with data contained in remote
repositories whose full size would be significatly prohibitive to local use under most circumstances.

Note:

At the time of writing, the API, user-facing functionality, client-server negotiation protocols, and test
coverage of the remotes implementation is generally adqequate for this to serve as an “alpha” quality
preview. However, please be warned that significantly less time has been spent in this module to optimize
speed, refactor for simplicity, and assure stability under heavy loads than the rest of the Hangar core.
While we can guarantee that your data is secure on disk, you may experience crashes from time to time
when working with remotes. In addition, sending data over the wire should NOT be considered secure
in ANY way. No in-transit encryption, user authentication, or secure access limitations are implemented
at this moment. We realize the importance of these types of protections, and they are on our radar for
the next release cycle. If you are interested in making a contribution to Hangar, this module contains a
lot of low hanging fruit which would would provide drastic improvements and act as a good intro the the
internal Hangar data model. Please get in touch with us to discuss!

Starting a Hangar Server

To start a Hangar server, navigate to the command line and simply execute:

$ hangar server

This will get a local server instance running at localhost:50051. The IP and port can be configured by setting
the --ip and --port flags to the desired values in the command line.

A blocking process will begin in that terminal session. Leave it running while you experiment with connecting from a
client repo.

Using Remotes with a Local Repository

The CLI is the easiest way to interact with the remote server from a local repository (though all functioanlity is
mirrorred via the repository API (more on that later).

Before we begin we will set up a repository with some data, a few commits, two branches, and a merge.

4.6. Hangar Tutorial 95

Hangar, Release 0.5.2

Setup a Test Repo

As normal, we shall begin with creating a repository and adding some data. This should be familiar to you from
previous tutorials.

[1]: from hangar import Repository
import numpy as np
from tqdm import tqdm

testData = np.loadtxt('/Users/rick/projects/tensorwerk/hangar/dev/data/dota2Dataset/
→˓dota2Test.csv', delimiter=',', dtype=np.uint8)
trainData = np.loadtxt('/Users/rick/projects/tensorwerk/hangar/dev/data/dota2Dataset/
→˓dota2Train.csv', delimiter=',', dtype=np.uint16)

testName = 'test'
testPrototype = testData[0]
trainName = 'train'
trainPrototype = trainData[0]

[2]: repo = Repository('/Users/rick/projects/tensorwerk/hangar/dev/intro/')
repo.init(user_name='Rick Izzo', user_email='rick@tensorwerk.com', remove_old=True)
co = repo.checkout(write=True)

Hangar Repo initialized at: /Users/rick/projects/tensorwerk/hangar/dev/intro/.hangar

/Users/rick/projects/tensorwerk/hangar/hangar-py/src/hangar/context.py:94:
→˓UserWarning: No repository exists at /Users/rick/projects/tensorwerk/hangar/dev/
→˓intro/.hangar, please use `repo.init()` method
warnings.warn(msg, UserWarning)

[3]: co.add_ndarray_column(testName, prototype=testPrototype)
testcol = co.columns[testName]

pbar = tqdm(total=testData.shape[0])
with testcol as tcol:

for gameIdx, gameData in enumerate(testData):
if (gameIdx % 500 == 0):

pbar.update(500)
tcol.append(gameData)

pbar.close()

co.commit('initial commit on master with test data')

repo.create_branch('add-train')
co.close()
repo.log()

10500it [00:02, 4286.17it/s]

* a=b98f6b65c0036489e53ddaf2b30bf797ddc40da0 (add-train) (master) : initial commit on
→˓master with test data

[6]: co = repo.checkout(write=True, branch='add-train')

co.add_ndarray_column(trainName, prototype=trainPrototype)
traincol = co.columns[trainName]

pbar = tqdm(total=trainData.shape[0])

(continues on next page)

96 Chapter 4. Development

Hangar, Release 0.5.2

(continued from previous page)

with traincol as trcol:
for gameIdx, gameData in enumerate(trainData):

if (gameIdx % 500 == 0):
pbar.update(500)

trcol.append(gameData)
pbar.close()

co.commit('added training data on another branch')
co.close()
repo.log()

93000it [00:22, 4078.73it/s]

* a=957d20e4b921f41975591cc8ee51a4a6912cb919 (add-train) : added training data on
→˓another branch

* a=b98f6b65c0036489e53ddaf2b30bf797ddc40da0 (master) : initial commit on master with
→˓test data

[7]: co = repo.checkout(write=True, branch='master')
co.metadata['earaea'] = 'eara'
co.commit('more changes here')
co.close()
repo.log()

* a=bb1b108ef17b7d7667a2ff396f257d82bad11e1d (master) : more changes here

* a=b98f6b65c0036489e53ddaf2b30bf797ddc40da0 : initial commit on master with test data

Pushing to a Remote

We will use the API remote add() method to add a remote, however, this can also be done with the CLI command:

$ hangar remote add origin localhost:50051

[8]: repo.remote.add('origin', 'localhost:50051')

[8]: RemoteInfo(name='origin', address='localhost:50051')

Pushing is as simple as running the push() method from the API or CLI:

$ hangar push origin master

Push the master branch:

[9]: repo.remote.push('origin', 'master')

counting objects: 100%|| 2/2 [00:00<00:00, 5.47it/s]
pushing schemas: 100%|| 1/1 [00:00<00:00, 133.74it/s]
pushing data: 97%|| 10001/10294 [00:01<00:00, 7676.23it/s]
pushing metadata: 100%|| 1/1 [00:00<00:00, 328.50it/s]
pushing commit refs: 100%|| 2/2 [00:00<00:00, 140.73it/s]

[9]: 'master'

Push the add-train branch:

[10]: repo.remote.push('origin', 'add-train')

4.6. Hangar Tutorial 97

Hangar, Release 0.5.2

counting objects: 100%|| 1/1 [00:01<00:00, 1.44s/it]
pushing schemas: 100%|| 1/1 [00:00<00:00, 126.05it/s]
pushing data: 99%|| 92001/92650 [00:12<00:00, 7107.60it/s]
pushing metadata: 0it [00:00, ?it/s]
pushing commit refs: 100%|| 1/1 [00:00<00:00, 17.05it/s]

[10]: 'add-train'

Details of the Negotiation Processs

The following details are not necessary to use the system, but may be of interest to some readers

When we push data, we perform a negotation with the server which basically occurs like this:

• Hi, I would like to push this branch, do you have it?

• If yes, what is the latest commit you record on it?

– Is that the same commit I’m trying to push? If yes, abort.

– Is that a commit I don’t have? If yes, someone else has updated that branch, abort.

• Here’s the commit digests which are parents of my branches head, which commits are you missing?

• Ok great, I’m going to scan through each of those commits to find the data hashes they contain. Tell me which
ones you are missing.

• Thanks, now I’ll send you all of the data corresponding to those hashes. It might be a lot of data, so we’ll handle
this in batches so that if my connection cuts out, we can resume this later

• Now that you have the data, I’m going to send the actual commit references for you to store, this isn’t that much
information, but you’ll be sure to verify that I’m not trying to pull any funny buisness and send you incorrect
data.

• Now that you’ve received everything, and have verified it matches what I told you it is, go ahead and make those
commits I’ve pushed available as the HEAD of the branch I just sent. It’s some good work that others will
want!

When we want to fetch updates to a branch, essentially the exact same thing happens in reverse. Instead of asking the
server what it doesn’t have, we ask it what it does have, and then request the stuff that we are missing!

Partial Fetching and Clones

Now we will introduce one of the most important and unique features of Hangar remotes: Partial fetch/clone of
data!

There is a very real problem with keeping the full history of data - **it’s huge*!* The size of data can very easily
exceeds what can fit on (most) contributors laptops or personal workstations. This section explains how Hangar can
handle working with columns which are prohibitively large to download or store on a single machine.

As mentioned in High Performance From Simplicity, under the hood Hangar deals with “Data” and “Bookkeeping”
completely separately. We’ve previously covered what exactly we mean by Data in How Hangar Thinks About Data,
so we’ll briefly cover the second major component of Hangar here. In short “Bookkeeping” describes everything about
the repository. By everything, we do mean that the Bookkeeping records describe everything: all commits, parents,
branches, columns, samples, data descriptors, schemas, commit message, etc. Though complete, these records are
fairly small (tens of MB in size for decently sized repositories with decent history), and are highly compressed for fast
transfer between a Hangar client/server.

A brief technical interlude

98 Chapter 4. Development

Hangar, Release 0.5.2

There is one very important (and rather complex) property which gives Hangar Bookeeping massive
power: existence of some data piece is always known to Hangar and stored immutably once committed.
However, the access pattern, backend, and locating information for this data piece may (and over time,
will) be unique in every hangar repository instance.

Though the details of how this works is well beyond the scope of this document, the following example
may provide some insight into the implications of this property:

If you clone some Hangar repository, Bookeeping says that “some number of data pieces exist” and they
should retrieved from the server. However, the bookeeping records transfered in a fetch / push / clone
operation do not include information about where that piece of data existed on the client (or server)
computer. Two synced repositories can use completly different backends to store the data, in completly
different locations, and it does not matter - Hangar only guarantees that when collaborators ask for a data
sample in some checkout, that they will be provided with identical arrays, not that they will come from the
same place or be stored in the same way. Only when data is actually retrieved the “locating information”
is set for that repository instance. Because Hangar makes no assumptions about how/where it should
retrieve some piece of data, or even an assumption that it exists on the local machine, and because records
are small and completely describe history, once a machine has the Bookkeeping, it can decide what data it
actually wants to materialize on its local disk! These partial fetch / partial clone operations can materialize
any desired data, whether it be for a few records at the head branch, for all data in a commit, or for the
entire historical data. A future release will even include the ability to stream data directly to a Hangar
checkout and materialize the data in memory without having to save it to disk at all!

More importantly: since Bookkeeping describes all history, merging can be performed between branches which may
contain partial (or even no) actual data. Aka you don’t need data on disk to merge changes into it. It’s an odd
concept which will be shown in this tutorial

Cloning a Remote Repo

$ hangar clone localhost:50051

[11]: cloneRepo = Repository('/Users/rick/projects/tensorwerk/hangar/dev/dota-clone/')

/Users/rick/projects/tensorwerk/hangar/hangar-py/src/hangar/context.py:94:
→˓UserWarning: No repository exists at /Users/rick/projects/tensorwerk/hangar/dev/
→˓dota-clone/.hangar, please use `repo.init()` method
warnings.warn(msg, UserWarning)

When we perform the initial clone, we will only receive the master branch by default.

[12]: cloneRepo.clone('rick izzo', 'rick@tensorwerk.com', 'localhost:50051', remove_
→˓old=True)

fetching commit data refs: 0%| | 0/2 [00:00<?, ?it/s]

Hangar Repo initialized at: /Users/rick/projects/tensorwerk/hangar/dev/dota-clone/.
→˓hangar

fetching commit data refs: 100%|| 2/2 [00:00<00:00, 5.73it/s]
fetching commit spec: 100%|| 2/2 [00:00<00:00, 273.30it/s]

Hard reset requested with writer_lock: 27634b20-3c5b-4ee0-aac3-b5ce6cb7daf0

[12]: 'master'

[13]: cloneRepo.log()

4.6. Hangar Tutorial 99

Hangar, Release 0.5.2

* a=bb1b108ef17b7d7667a2ff396f257d82bad11e1d (master) (origin/master) : more changes
→˓here

* a=b98f6b65c0036489e53ddaf2b30bf797ddc40da0 : initial commit on master with test data

[14]: cloneRepo.list_branches()

[14]: ['master', 'origin/master']

To get the add-train branch, we fetch it from the remote:

[15]: cloneRepo.remote.fetch('origin', 'add-train')

fetching commit data refs: 100%|| 1/1 [00:01<00:00, 1.51s/it]
fetching commit spec: 100%|| 1/1 [00:00<00:00, 35.85it/s]

[15]: 'origin/add-train'

[16]: cloneRepo.list_branches()

[16]: ['master', 'origin/add-train', 'origin/master']

[17]: cloneRepo.log(branch='origin/add-train')

* a=957d20e4b921f41975591cc8ee51a4a6912cb919 (origin/add-train) : added training data
→˓on another branch

* a=b98f6b65c0036489e53ddaf2b30bf797ddc40da0 : initial commit on master with test data

We will create a local branch from the origin/add-train branch, just like in Git

[18]: cloneRepo.create_branch('add-train', 'a=957d20e4b921f41975591cc8ee51a4a6912cb919')

[18]: BranchHead(name='add-train', digest='a=957d20e4b921f41975591cc8ee51a4a6912cb919')

[19]: cloneRepo.list_branches()

[19]: ['add-train', 'master', 'origin/add-train', 'origin/master']

[20]: cloneRepo.log(branch='add-train')

* a=957d20e4b921f41975591cc8ee51a4a6912cb919 (add-train) (origin/add-train) : added
→˓training data on another branch

* a=b98f6b65c0036489e53ddaf2b30bf797ddc40da0 : initial commit on master with test data

Checking out a Parial Clone/Fetch

When we fetch/clone, the transfers are very quick, because only the commit records/history were retrieved. The data
was not sent, because it may be very large to get the entire data across all of history.

When you check out a commit with partial data, you will be shown a warning indicating that some data is not available
locally. An error is raised if you try to access that particular sample data. Otherwise, everything will appear as normal.

[21]: co = cloneRepo.checkout(branch='master')

* Checking out BRANCH: master with current HEAD:
→˓a=bb1b108ef17b7d7667a2ff396f257d82bad11e1d

100 Chapter 4. Development

Hangar, Release 0.5.2

/Users/rick/projects/tensorwerk/hangar/hangar-py/src/hangar/columns/constructors.py:
→˓45: UserWarning: Column: test contains `reference-only` samples, with actual data
→˓residing on a remote server. A `fetch-data` operation is required to access these
→˓samples.
f'operation is required to access these samples.', UserWarning)

[22]: co

[22]: Hangar ReaderCheckout
Writer : False
Commit Hash : a=bb1b108ef17b7d7667a2ff396f257d82bad11e1d
Num Columns : 1
Num Metadata : 1

we can see from the repr that the columns contain partial remote references

[23]: co.columns

[23]: Hangar Columns
Writeable : False
Number of Columns : 1
Column Names / Partial Remote References:

- test / True

[24]: co.columns['test']

[24]: Hangar FlatSampleReader
Column Name : test
Writeable : False
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : uint8
Shape : (117,)
Number of Samples : 10294
Partial Remote Data Refs : True

[25]: testKey = next(co.columns['test'].keys())

[26]: co.columns['test'][testKey]

FileNotFoundError Traceback (most recent call last)
<ipython-input-26-cb069e761eb3> in <module>
----> 1 co.columns['test'][testKey]

~/projects/tensorwerk/hangar/hangar-py/src/hangar/columns/layout_flat.py in __getitem_
→˓_(self, key)

222 """
223 spec = self._samples[key]

--> 224 return self._be_fs[spec.backend].read_data(spec)
225
226 def get(self, key: KeyType, default=None):

~/projects/tensorwerk/hangar/hangar-py/src/hangar/backends/remote_50.py in read_
→˓data(self, hashVal)

(continues on next page)

4.6. Hangar Tutorial 101

Hangar, Release 0.5.2

(continued from previous page)

172 def read_data(self, hashVal: REMOTE_50_DataHashSpec) -> None:
173 raise FileNotFoundError(

--> 174 f'data hash spec: {REMOTE_50_DataHashSpec} does not exist on this
→˓machine. '

175 f'Perform a `data-fetch` operation to retrieve it from the remote
→˓server.')

176

FileNotFoundError: data hash spec: <class 'hangar.backends.specs.REMOTE_50_
→˓DataHashSpec'> does not exist on this machine. Perform a `data-fetch` operation to
→˓retrieve it from the remote server.

Fetching Data from a Remote

To retrieve the data, we use the fetch_data() method (accessible via the API or fetch-data via the CLI).

The amount / type of data to retrieve is extremly configurable via the following options:

Remotes.fetch_data(remote: str, branch: str = None, commit: str = None, *, column_names: Op-
tional[Sequence[str]] = None, max_num_bytes: int = None, retrieve_all_history:
bool = False)→ List[str]

Retrieve the data for some commit which exists in a partial state.

Parameters

• remote (str) – name of the remote to pull the data from

• branch (str, optional) – The name of a branch whose HEAD will be used as the
data fetch point. If None, commit argument expected, by default None

• commit (str, optional) – Commit hash to retrieve data for, If None, branch argu-
ment expected, by default None

• column_names (Optional[Sequence[str]]) – Names of the columns which
should be retrieved for the particular commits, any columns not named will not have their
data fetched from the server. Default behavior is to retrieve all columns

• max_num_bytes (Optional[int]) – If you wish to limit the amount of data sent to
the local machine, set a max_num_bytes parameter. This will retrieve only this amount of
data from the server to be placed on the local disk. Default is to retrieve all data regardless
of how large.

• retrieve_all_history (Optional[bool]) – if data should be retrieved for all
history accessible by the parents of this commit HEAD. by default False

Returns commit hashes of the data which was returned.

Return type List[str]

Raises

• ValueError – if branch and commit args are set simultaneously.

• ValueError – if specified commit does not exist in the repository.

• ValueError – if branch name does not exist in the repository.

This will retrieve all the data on the master branch, but not on the add-train branch.

102 Chapter 4. Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Hangar, Release 0.5.2

[29]: cloneRepo.remote.fetch_data('origin', branch='master')

counting objects: 100%|| 1/1 [00:00<00:00, 27.45it/s]
fetching data: 100%|| 10294/10294 [00:01<00:00, 6664.60it/s]

[29]: ['a=bb1b108ef17b7d7667a2ff396f257d82bad11e1d']

[30]: co = cloneRepo.checkout(branch='master')

* Checking out BRANCH: master with current HEAD:
→˓a=bb1b108ef17b7d7667a2ff396f257d82bad11e1d

[31]: co

[31]: Hangar ReaderCheckout
Writer : False
Commit Hash : a=bb1b108ef17b7d7667a2ff396f257d82bad11e1d
Num Columns : 1
Num Metadata : 1

Unlike before, we see that there is no partial references from the repr

[32]: co.columns

[32]: Hangar Columns
Writeable : False
Number of Columns : 1
Column Names / Partial Remote References:

- test / False

[33]: co.columns['test']

[33]: Hangar FlatSampleReader
Column Name : test
Writeable : False
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : uint8
Shape : (117,)
Number of Samples : 10294
Partial Remote Data Refs : False

When we access the data this time, it is available and retrieved as requested!

[34]: co['test', testKey]

[34]: array([255, 223, 8, 2, 0, 255, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 255, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 255, 0, 0,
0, 0, 0, 0, 0, 255, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0],

dtype=uint8)

4.6. Hangar Tutorial 103

Hangar, Release 0.5.2

[35]: co.close()

Working with mixed local / remote checkout Data

If we were to checkout the add-train branch now, we would see that there is no arrayset "train" data, but
there will be data common to the ancestor that master and add-train share.

[36]: cloneRepo.log('add-train')

* a=957d20e4b921f41975591cc8ee51a4a6912cb919 (add-train) (origin/add-train) : added
→˓training data on another branch

* a=b98f6b65c0036489e53ddaf2b30bf797ddc40da0 : initial commit on master with test data

In this case, the common ancestor is commit: 9b93b393e8852a1fa57f0170f54b30c2c0c7d90f

To show that there is no data on the add-train branch:

[37]: co = cloneRepo.checkout(branch='add-train')

* Checking out BRANCH: add-train with current HEAD:
→˓a=957d20e4b921f41975591cc8ee51a4a6912cb919

/Users/rick/projects/tensorwerk/hangar/hangar-py/src/hangar/columns/constructors.py:
→˓45: UserWarning: Column: train contains `reference-only` samples, with actual data
→˓residing on a remote server. A `fetch-data` operation is required to access these
→˓samples.
f'operation is required to access these samples.', UserWarning)

[38]: co

[38]: Hangar ReaderCheckout
Writer : False
Commit Hash : a=957d20e4b921f41975591cc8ee51a4a6912cb919
Num Columns : 2
Num Metadata : 0

[39]: co.columns

[39]: Hangar Columns
Writeable : False
Number of Columns : 2
Column Names / Partial Remote References:

- test / False
- train / True

[40]: co['test', testKey]

[40]: array([255, 223, 8, 2, 0, 255, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 255, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 255, 0, 0,
0, 0, 0, 0, 0, 255, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0],

dtype=uint8)

104 Chapter 4. Development

Hangar, Release 0.5.2

[41]: trainKey = next(co.columns['train'].keys())

[42]: co.columns['train'][trainKey]

FileNotFoundError Traceback (most recent call last)
<ipython-input-42-549d3e1dc7a1> in <module>
----> 1 co.columns['train'][trainKey]

~/projects/tensorwerk/hangar/hangar-py/src/hangar/columns/layout_flat.py in __getitem_
→˓_(self, key)

222 """
223 spec = self._samples[key]

--> 224 return self._be_fs[spec.backend].read_data(spec)
225
226 def get(self, key: KeyType, default=None):

~/projects/tensorwerk/hangar/hangar-py/src/hangar/backends/remote_50.py in read_
→˓data(self, hashVal)

172 def read_data(self, hashVal: REMOTE_50_DataHashSpec) -> None:
173 raise FileNotFoundError(

--> 174 f'data hash spec: {REMOTE_50_DataHashSpec} does not exist on this
→˓machine. '

175 f'Perform a `data-fetch` operation to retrieve it from the remote
→˓server.')

176

FileNotFoundError: data hash spec: <class 'hangar.backends.specs.REMOTE_50_
→˓DataHashSpec'> does not exist on this machine. Perform a `data-fetch` operation to
→˓retrieve it from the remote server.

[43]: co.close()

Merging Branches with Partial Data

Even though we don’t have the actual data references in the add-train branch, it is still possible to merge the two
branches!

This is possible because Hangar doesn’t use the data contents in its internal model of checkouts / commits, but instead
thinks of a checkouts as a sequence of columns / metadata / keys & their associated data hashes (which are very small
text records; ie. “bookkeeping”). To show this in action, lets merge the two branches master (containing all data
locally) and add-train (containing partial remote references for the train arrayset) together and push it to the
Remote!

[44]: cloneRepo.log('master')

* a=bb1b108ef17b7d7667a2ff396f257d82bad11e1d (master) (origin/master) : more changes
→˓here

* a=b98f6b65c0036489e53ddaf2b30bf797ddc40da0 : initial commit on master with test data

[45]: cloneRepo.log('add-train')

* a=957d20e4b921f41975591cc8ee51a4a6912cb919 (add-train) (origin/add-train) : added
→˓training data on another branch

* a=b98f6b65c0036489e53ddaf2b30bf797ddc40da0 : initial commit on master with test data

Perform the Merge

4.6. Hangar Tutorial 105

Hangar, Release 0.5.2

[46]: cloneRepo.merge('merge commit here', 'master', 'add-train')

Selected 3-Way Merge Strategy

[46]: 'a=ace3dacbd94f475664ee136dcf05430a2895aca3'

IT WORKED!

[47]: cloneRepo.log()

* a=ace3dacbd94f475664ee136dcf05430a2895aca3 (master) : merge commit here
|\

* | a=bb1b108ef17b7d7667a2ff396f257d82bad11e1d (origin/master) : more changes here
| * a=957d20e4b921f41975591cc8ee51a4a6912cb919 (add-train) (origin/add-train) : added
→˓training data on another branch
|/

* a=b98f6b65c0036489e53ddaf2b30bf797ddc40da0 : initial commit on master with test data

We can check the summary of the master commit to check that the contents are what we expect (containing both test
and train columns)

[48]: cloneRepo.summary()

Summary of Contents Contained in Data Repository

==================
Repository Info
Base Directory: /Users/rick/projects/tensorwerk/hangar/dev/dota-clone
Disk Usage: 42.03 MB

===================
Commit Details
Commit: a=ace3dacbd94f475664ee136dcf05430a2895aca3
Created: Tue Feb 25 19:18:30 2020
By: rick izzo
Email: rick@tensorwerk.com
Message: merge commit here

==================
DataSets
Number of Named Columns: 2
* Column Name: ColumnSchemaKey(column="test", layout="flat")
Num Data Pieces: 10294
Details:
- column_layout: flat
- column_type: ndarray
- schema_type: fixed_shape
- shape: (117,)
- dtype: uint8
- backend: 10
- backend_options: {}
* Column Name: ColumnSchemaKey(column="train", layout="flat")
Num Data Pieces: 92650
Details:

(continues on next page)

106 Chapter 4. Development

Hangar, Release 0.5.2

(continued from previous page)

| - column_layout: flat
| - column_type: ndarray
| - schema_type: fixed_shape
| - shape: (117,)
| - dtype: uint16
| - backend: 10
| - backend_options: {}

==================
Metadata:
Number of Keys: 1

Pushing the Merge back to the Remote

To push this merge back to our original copy of the Repository (repo), we just push the master branch back to the
remote via the API or CLI.

[49]: cloneRepo.remote.push('origin', 'master')

counting objects: 100%|| 1/1 [00:00<00:00, 1.02it/s]
pushing schemas: 0it [00:00, ?it/s]
pushing data: 0it [00:00, ?it/s]
pushing metadata: 0it [00:00, ?it/s]
pushing commit refs: 100%|| 1/1 [00:00<00:00, 34.26it/s]

[49]: 'master'

Looking at our current state of our other instance of the repo repowe see that the merge changes aren’t yet propogated
to it (since it hasn’t fetched from the remote yet).

[50]: repo.log()

* a=bb1b108ef17b7d7667a2ff396f257d82bad11e1d (master) (origin/master) : more changes
→˓here

* a=b98f6b65c0036489e53ddaf2b30bf797ddc40da0 : initial commit on master with test data

To fetch the merged changes, just fetch() the branch as normal. Like all fetches, this will be a fast operation, as it will
be a partial fetch operation, not actually transfering the data.

[51]: repo.remote.fetch('origin', 'master')

fetching commit data refs: 100%|| 1/1 [00:01<00:00, 1.33s/it]
fetching commit spec: 100%|| 1/1 [00:00<00:00, 37.61it/s]

[51]: 'origin/master'

[52]: repo.log('origin/master')

* a=ace3dacbd94f475664ee136dcf05430a2895aca3 (origin/master) : merge commit here
|\

* | a=bb1b108ef17b7d7667a2ff396f257d82bad11e1d (master) : more changes here
| * a=957d20e4b921f41975591cc8ee51a4a6912cb919 (add-train) (origin/add-train) : added
→˓training data on another branch
|/

* a=b98f6b65c0036489e53ddaf2b30bf797ddc40da0 : initial commit on master with test data

4.6. Hangar Tutorial 107

Hangar, Release 0.5.2

To bring our master branch up to date is a simple fast-forward merge.

[53]: repo.merge('ff-merge', 'master', 'origin/master')

Selected Fast-Forward Merge Strategy

[53]: 'a=ace3dacbd94f475664ee136dcf05430a2895aca3'

[54]: repo.log()

* a=ace3dacbd94f475664ee136dcf05430a2895aca3 (master) (origin/master) : merge
→˓commit here
|\

* | a=bb1b108ef17b7d7667a2ff396f257d82bad11e1d : more changes here
| * a=957d20e4b921f41975591cc8ee51a4a6912cb919 (add-train) (origin/add-train) : added
→˓training data on another branch
|/

* a=b98f6b65c0036489e53ddaf2b30bf797ddc40da0 : initial commit on master with test data

Everything is as it should be! Now, try it out for yourself!

[55]: repo.summary()

Summary of Contents Contained in Data Repository

==================
Repository Info
Base Directory: /Users/rick/projects/tensorwerk/hangar/dev/intro
Disk Usage: 77.43 MB

===================
Commit Details
Commit: a=ace3dacbd94f475664ee136dcf05430a2895aca3
Created: Tue Feb 25 19:18:30 2020
By: rick izzo
Email: rick@tensorwerk.com
Message: merge commit here

==================
DataSets
Number of Named Columns: 2
* Column Name: ColumnSchemaKey(column="test", layout="flat")
Num Data Pieces: 10294
Details:
- column_layout: flat
- column_type: ndarray
- schema_type: fixed_shape
- shape: (117,)
- dtype: uint8
- backend: 10
- backend_options: {}
* Column Name: ColumnSchemaKey(column="train", layout="flat")
Num Data Pieces: 92650
Details:

(continues on next page)

108 Chapter 4. Development

Hangar, Release 0.5.2

(continued from previous page)

| - column_layout: flat
| - column_type: ndarray
| - schema_type: fixed_shape
| - shape: (117,)
| - dtype: uint16
| - backend: 10
| - backend_options: {}

==================
Metadata:
Number of Keys: 1

[]:

4.6.7 Dataloaders for Machine Learning (Tensorflow & PyTorch)

Warning: The usage info displayed in the latest build of the project documentation do not reflect recent
changes to the API and internal structure of the project. They should not be relied on at the current moment; they
will be updated over the next weeks, and will be in line before the next release.

This tutorial acts as a step by step guide for fetching, preprocessing, storing and loading the MS-COCO dataset for
image captioning using deep learning. We have chosen image captioning for this tutorial not by accident. For such an
application, the dataset required will have both fixed shape (image) and variably shaped (caption because it’s sequence
of natural language) data. This diversity should help the user to get a mental model about how flexible and easy is to
plug Hangar to the existing workflow.

You will use the MS-COCO dataset to train our model. The dataset contains over 82,000 images, each of which has at
least 5 different caption annotations.

This tutorial assumes you have downloaded and extracted the MS-COCO dataset in the current directory. If you
haven’t yet, shell commands below should help you do it (beware, it’s about 14 GB data). If you are on Windows,
please find the equivalent commands to get the dataset downloaded.

wget http://images.cocodataset.org/zips/train2014.zip
unzip train2014.zip
rm train2014.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip
unzip annotations_trainval2014.zip
rm annotations_trainval2014.zip

Let’s install the required packages in our environment. We will be using Tensorflow 1.14 in this tutorial but it should
work in all the Tensorflow versions starting from 1.12. But do let us know if you face any hiccups. Install below-given
packages before continue. Apart from Tensorflow and Hangar, we use SpaCy for pre-processing the captions. SpaCy
is probably the most widely used natural language toolkit now.

tensorflow==1.14.0
hangar
spacy==2.1.8

One more thing before jumping into the tutorial: we need to download the SpaCy English model en_core_web_md
which cannot be dynamically loaded. Which means that it must be downloaded with the below command outside this

4.6. Hangar Tutorial 109

http://cocodataset.org/#home
http://cocodataset.org/#home
https://spacy.io/

Hangar, Release 0.5.2

runtime and should reload this runtime.

python -m spacy download en_core_web_md

Once all the dependencies are installed and loaded, we can start building our hangar repository.

Hangar Repository creation and column init

We will create a repository and initialize one column named images now for a quick demo of how Tensorflow
dataloader work. Then we wipe the current repository and create new columns for later portions.

[]: repo_path = 'hangar_repo'
username = 'hhsecond'
email = 'sherin@tensorwerk.com'
img_shape = (299, 299, 3)
image_dir = '/content/drive/My Drive/train2014'
annotation_file = ''
import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)

[2]: import os
from hangar import Repository
import tensorflow as tf
import numpy as np

tf.compat.v1.enable_eager_execution()

if not os.path.isdir(repo_path):
os.mkdir(repo_path)

repo = Repository(repo_path)
repo.init(user_name=username, user_email=email, remove_old=True)
co = repo.checkout(write=True)

images_column = co.add_ndarray_column('images', shape=img_shape, dtype=np.uint8,)
co.commit('column init')
co.close()

Hangar Repo initialized at: hangar_repo/.hangar

Add sample images

Here we add few images to the repository and show how we can load this data as Tensorflow dataloader. We use the
idea we learn here in the later portions to build a fully fledged training loop.

[]: import os
from PIL import Image

co = repo.checkout(write=True)
images_column = co.columns['images']
try:

for i, file in enumerate(os.listdir(image_dir)):
pil_img = Image.open(os.path.join(image_dir, file))

(continues on next page)

110 Chapter 4. Development

Hangar, Release 0.5.2

(continued from previous page)

if pil_img.mode == 'L':
pil_img = pil_img.convert('RGB')

img = pil_img.resize(img_shape[:-1])
img = np.array(img)
images_column[i] = img
if i != 0 and i % 2 == 0: # stopping at 2th image

break
except Exception as e:

print('Exception', e)
co.close()
raise e

co.commit('added image')
co.close()

Let’s make a Tensorflow dataloader

Hangar provides make_tf_dataset & make_torch_dataset for creating Tensorflow & PyTorch datasets
from Hangar columns. You can read more about it in the documentation. Next we’ll make a Tensorflow dataset and
loop over it to make sure we have got a proper Tensorflow dataset.

[]: from hangar import make_tf_dataset

[5]: from matplotlib.pyplot import imshow
co = repo.checkout()
image_column = co.columns['images']
dataset = make_tf_dataset(image_column)
for image in dataset:

imshow(image[0].numpy())
break

* Checking out BRANCH: master with current HEAD:
→˓b769f6d49a7dbb3dcd4f7c6e1c2a32696fd4128f
<class 'hangar.columns.arrayset.ArraysetDataReader'>(repo_pth=hangar_repo/.hangar,
→˓aset_name=images, default_schema_hash=b6edf0320f20, isVar=False, varMaxShape=(299,
→˓299, 3), varDtypeNum=2, mode=r)

/usr/local/lib/python3.6/dist-packages/hangar/dataloaders/tfloader.py:88: UserWarning:
→˓ Dataloaders are experimental in the current release.
warnings.warn("Dataloaders are experimental in the current release.", UserWarning)

4.6. Hangar Tutorial 111

https://hangar-py.readthedocs.io/en/latest/api.html#ml-framework-dataloaders

Hangar, Release 0.5.2

New columns

For our example, we would need two columns. One for the image and another one for captions. Let’s wipe our existing
repository (remove_old argument in repo.init does this) and create these columns

[6]: repo = Repository(repo_path)
repo.init(user_name=username, user_email=email, remove_old=True)
co = repo.checkout(write=True)

images_column = co.add_ndarray_column('images', shape=img_shape, dtype=np.uint8)
captions_column = co.add_ndarray_column('captions', shape=(60,), dtype=np.float,
→˓variable_shape=True)
co.commit('column init')
co.close()

Hangar Repo initialized at: hangar_repo/.hangar

Store image and captions to Hangar repo

Each image will be converted to RGB channels with dtype uint8. Each caption will be prepended with START token
and ended with END token before converting them to floats. We have another preprocessing stage for images later.

We’ll start with loading the caption file:

[]: import json
annotation_file = 'annotations/captions_train2014.json'
with open(annotation_file, 'r') as f:

annotations = json.load(f)

[]: import spacy
if you have installed spacy and the model in the same notebook session, you might
→˓need to restart the runtime to get it into the scope
nlp = spacy.load('en_core_web_md')

[]: def sent2index(sent):
"""

(continues on next page)

112 Chapter 4. Development

Hangar, Release 0.5.2

(continued from previous page)

Convert sentence to an array of indices using SpaCy
"""
ids = []
doc = nlp(sent)
for token in doc:

if token.has_vector:
id = nlp.vocab.vectors.key2row[token.norm]

else:
id = sent2index('UNK')[0]

ids.append(id)
return ids

Save the data to Hangar

[10]: import os
from tqdm import tqdm

all_captions = []
all_img_name_vector = []
limit = 100 # if you are not planning to save the whole dataset to Hangar. Zero
→˓means whole dataset

co = repo.checkout(write=True)
images_column = co.columns['images']
captions_column = co.columns['captions']
all_files = set(os.listdir(image_dir))
i = 0
with images_column, captions_column:

for annot in tqdm(annotations['annotations']):
if limit and i > limit:

continue
image_id = annot['image_id']
assumed_image_paths = 'COCO_train2014_' + '%012d.jpg' % (image_id)
if assumed_image_paths not in all_files:

continue
img_path = os.path.join(image_dir, assumed_image_paths)
img = Image.open(img_path)
if img.mode == 'L':

img = img.convert('RGB')
img = img.resize(img_shape[:-1])
img = np.array(img)
cap = sent2index('sos ' + annot['caption'] + ' eos')
cap = np.array(cap, dtype=np.float)
key = images_column.append(img)
captions_column[key] = cap
if i % 1000 == 0 and i != 0:

if co.diff.status() == 'DIRTY':
co.commit(f'Added batch {i}')

i += 1
co.commit('Added full data')
co.close()

100%|| 414113/414113 [00:03<00:00, 122039.19it/s]

4.6. Hangar Tutorial 113

Hangar, Release 0.5.2

Preprocess Images

Our image captioning network requires a pre-processed input. We use transfer learning for this with a pretrained
InceptionV3 network which is available in Keras. But we have a problem. Preprocessing is costly and we don’t
want to do it all the time. Since Hangar is flexible enough to create multiple columns and let you call the group
of column as a dataset, it is quite easy to do make a new column for the processed image and we don’t have to
do the preprocessing online but keep a preprocessed image in the new column in the same repository with the same
key. Which means, we have three columns in our repository (all three has different samples with the same name): -
images - captions - processed_images

Although we need only the processed_images for the network, we still keep the bare image in the repository in
case we need to look into it later or if we decided to do some other preprocessing instead of InceptionV3 (it is always
advised to keep the source truth with you).

[]: import tensorflow as tf
tf.compat.v1.enable_eager_execution()
image_model = tf.keras.applications.InceptionV3(include_top=False, weights='imagenet')
new_input = image_model.input
hidden_layer = image_model.layers[-1].output
image_features_extract_model = tf.keras.Model(new_input, hidden_layer)

def process_image(img):
img = tf.keras.applications.inception_v3.preprocess_input(img)
img = np.expand_dims(img, axis=0)
img = image_features_extract_model(img)
return tf.reshape(img, (-1, img.shape[3]))

[]: from hangar import Repository
import numpy as np

repo_path = 'hangar_repo'

repo = Repository(repo_path)
co = repo.checkout(write=True)
images = co.columns['images']
sample_name = list(images.keys())[0]
prototype = process_image(images[sample_name]).numpy()
pimages = co.add_ndarray_column('processed_images', prototype=prototype)

Saving the pre-processed images to the new column

[6]: from tqdm import tqdm

with pimages:
for key in tqdm(images):

pimages[key] = process_image(images[key]).numpy()

co.commit('processed image saved')
co.close()

100%|| 101/101 [00:11<00:00, 8.44it/s]

114 Chapter 4. Development

Hangar, Release 0.5.2

Dataloaders for training

We are using Tensorflow to build the network but how do we load this data from Hangar repository to Tensorflow?

A naive option would be to run through the samples and load the numpy arrays and pass that to the sess.run of
Tensorflow. But that would be quite inefficient. Tensorflow uses multiple threads to load the data in memory and its
dataloaders can prefetch the data before-hand so that your training loop doesn’t get blocked while loading the data.
Also, Tensoflow dataloaders brings batching, shuffling, etc. to the table prebuilt. That’s cool but how to load data from
Hangar to Tensorflow using TF dataset? Well, we have make_tf_dataset which accepts the list of columns as a
parameter and returns a TF dataset object.

[7]: from hangar import make_tf_dataset
co = repo.checkout() # we don't need write checkout here

* Checking out BRANCH: master with current HEAD:
→˓3cbb3fbe7eb0e056ff97e75f41d26303916ef686

[8]: BATCH_SIZE = 1
EPOCHS = 2
embedding_dim = 256
units = 512
vocab_size = len(nlp.vocab.vectors.key2row)
num_steps = 50

captions_dset = co.columns['captions']
pimages_dset = co.columns['processed_images']

dataset = make_tf_dataset([pimages_dset, captions_dset], shuffle=True)

<class 'hangar.columns.arrayset.ArraysetDataReader'>(repo_pth=hangar_repo/.hangar,
→˓aset_name=processed_images, default_schema_hash=f230548212ab, isVar=False,
→˓varMaxShape=(64, 2048), varDtypeNum=11, mode=r)
<class 'hangar.columns.arrayset.ArraysetDataReader'>(repo_pth=hangar_repo/.hangar,
→˓aset_name=captions, default_schema_hash=4d60751421d5, isVar=True, varMaxShape=(60,),
→˓ varDtypeNum=12, mode=r)

/usr/local/lib/python3.6/dist-packages/hangar/dataloaders/tfloader.py:88: UserWarning:
→˓ Dataloaders are experimental in the current release.
warnings.warn("Dataloaders are experimental in the current release.", UserWarning)

Padded Batching

Batching needs a bit more explanation here since the dataset does not just consist of fixed shaped data. We have two
dataset in which one is for captions. As you know captions are sequences which can be variably shaped. So instead
of using dataset.batch we need to use dataset.padded_batch which takes care of padding the tensors
with the longest value in each dimension for each batch. This padded_batch needs the shape by which the user
needs the batch to be padded. Unless you need customization, you can use the shape stored in the dataset object
by make_tf_dataset function.

[9]: output_shapes = tf.compat.v1.data.get_output_shapes(dataset)
output_shapes

[9]: (TensorShape([Dimension(64), Dimension(2048)]), TensorShape([Dimension(None)]))

[]: dataset = dataset.padded_batch(BATCH_SIZE, padded_shapes=output_shapes)

4.6. Hangar Tutorial 115

Hangar, Release 0.5.2

Build the network

Since we have the dataloaders ready, we can now build the network for image captioning and start training. Rest of
this tutorial is a copy of an official Tensorflow tutorial which is available at https://tensorflow.org/beta/tutorials/text/
image_captioning. The content of Tensorflow tutorial page is licensed under the Creative Commons Attribution 4.0
License, and code samples are licensed under the Apache 2.0 License. Access date: Aug 20 2019

In this example, you extract the features from the lower convolutional layer of InceptionV3 giving us a vector of shape
(8, 8, 2048) and quash that to a shape of (64, 2048). We have stored the result of this already to our Hangar repo. This
vector is then passed through the CNN Encoder (which consists of a single Fully connected layer). The RNN (here
GRU) attends over the image to predict the next word.

[]: class BahdanauAttention(tf.keras.Model):
def __init__(self, units):

super(BahdanauAttention, self).__init__()
self.W1 = tf.keras.layers.Dense(units)
self.W2 = tf.keras.layers.Dense(units)
self.V = tf.keras.layers.Dense(1)

def call(self, features, hidden):
features(CNN_encoder output) shape == (batch_size, 64, embedding_dim)
hidden shape == (batch_size, hidden_size)
hidden_with_time_axis shape == (batch_size, 1, hidden_size)
hidden_with_time_axis = tf.expand_dims(hidden, 1)
score shape == (batch_size, 64, hidden_size)
score = tf.nn.tanh(self.W1(features) + self.W2(hidden_with_time_axis))
attention_weights shape == (batch_size, 64, 1)
you get 1 at the last axis because you are applying score to self.V
attention_weights = tf.nn.softmax(self.V(score), axis=1)
context_vector shape after sum == (batch_size, hidden_size)
context_vector = attention_weights * features
context_vector = tf.reduce_sum(context_vector, axis=1)

return context_vector, attention_weights

[]: class CNN_Encoder(tf.keras.Model):
Since you have already extracted the features and dumped it using pickle
This encoder passes those features through a Fully connected layer
def __init__(self, embedding_dim):

super(CNN_Encoder, self).__init__()
shape after fc == (batch_size, 64, embedding_dim)
self.fc = tf.keras.layers.Dense(embedding_dim)

def call(self, x):
x = self.fc(x)
x = tf.nn.relu(x)
return x

[]: class RNN_Decoder(tf.keras.Model):
def __init__(self, embedding_dim, units, vocab_size):

super(RNN_Decoder, self).__init__()
self.units = units
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(self.units,

return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')

(continues on next page)

116 Chapter 4. Development

https://tensorflow.org/beta/tutorials/text/image_captioning
https://tensorflow.org/beta/tutorials/text/image_captioning

Hangar, Release 0.5.2

(continued from previous page)

self.fc1 = tf.keras.layers.Dense(self.units)
self.fc2 = tf.keras.layers.Dense(vocab_size)
self.attention = BahdanauAttention(self.units)

def call(self, x, features, hidden):
defining attention as a separate model
context_vector, attention_weights = self.attention(features, hidden)
x shape after passing through embedding == (batch_size, 1, embedding_dim)
x = self.embedding(x)
x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)
x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)
passing the concatenated vector to the GRU
output, state = self.gru(x)
shape == (batch_size, max_length, hidden_size)
x = self.fc1(output)
x shape == (batch_size * max_length, hidden_size)
x = tf.reshape(x, (-1, x.shape[2]))
output shape == (batch_size * max_length, vocab)
x = self.fc2(x)
return x, state, attention_weights

def reset_state(self, batch_size):
return tf.zeros((batch_size, self.units))

[]: def loss_function(real, pred):
mask = tf.math.logical_not(tf.math.equal(real, 0))
loss_ = loss_object(real, pred)
mask = tf.cast(mask, dtype=loss_.dtype)
loss_ *= mask
return tf.reduce_mean(loss_)

[]: @tf.function
def train_step(img_tensor, target):

loss = 0
initializing the hidden state for each batch
because the captions are not related from image to image
hidden = decoder.reset_state(batch_size=target.shape[0])
TODO: do this dynamically: '<start>' == 2
dec_input = tf.expand_dims([2] * BATCH_SIZE, 1)

with tf.GradientTape() as tape:
features = encoder(img_tensor)
for i in range(1, target.shape[1]):

passing the features through the decoder
predictions, hidden, _ = decoder(dec_input, features, hidden)
loss += loss_function(target[:, i], predictions)
using teacher forcing
dec_input = tf.expand_dims(target[:, i], 1)

total_loss = (loss / int(target.shape[1]))
trainable_variables = encoder.trainable_variables + decoder.trainable_variables

gradients = tape.gradient(loss, trainable_variables)
optimizer.apply_gradients(zip(gradients, trainable_variables))
return loss, total_loss

4.6. Hangar Tutorial 117

Hangar, Release 0.5.2

[]: encoder = CNN_Encoder(embedding_dim)
decoder = RNN_Decoder(embedding_dim, units, vocab_size)
optimizer = tf.keras.optimizers.Adam()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True,
→˓reduction='none')

Training

Here we consume the dataset we have made before by looping over it. The dataset returns the image tensor and target
tensor (captions) which we will pass to train_step for training the network.

The encoder output, hidden state (initialized to 0) and the decoder input (which is the start token) is passed to the
decoder. The decoder returns the predictions and the decoder hidden state. The decoder hidden state is then passed
back into the model and the predictions are used to calculate the loss. Use teacher forcing to decide the next input to
the decoder. Teacher forcing is the technique where the target word is passed as the next input to the decoder. The
final step is to calculate the gradients and apply it to the optimizer and backpropagate.

[]: import time

loss_plot = []

for epoch in range(0, EPOCHS):
start = time.time()
total_loss = 0
for (batch, (img_tensor, target)) in enumerate(dataset):

batch_loss, t_loss = train_step(img_tensor, target)
total_loss += t_loss
if batch % 1 == 0:

print('Epoch {} Batch {} Loss {:.4f}'.format(
epoch + 1, batch, batch_loss.numpy() / int(target.shape[1])))

storing the epoch and loss value to plot later
loss_plot.append(total_loss / num_steps)

print('Epoch {} Loss {:.6f}'.format(epoch + 1,
total_loss / num_steps))

print('Time taken for 1 epoch {} sec\n'.format(time.time() - start))

Visualize the loss

[23]: import matplotlib.pyplot as plt
Below loss curve is not the actual loss image we have got
while training and kept it here only as a reference
plt.plot(loss_plot)
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Loss Plot')
plt.show()

118 Chapter 4. Development

Hangar, Release 0.5.2

[23]:

4.6.8 “Real World” Quick Start Tutorial

This tutorial will guide you on working with the basics of Hangar, while playing with some “real world” data:

• adding data to a repository

• commiting changes

• reading data from a commit

• inspecting contents of a commit

Setup

You can install Hangar via pip:

$ pip install hangar

or via conda:

$ conda install -c conda-forge hangar

Other requirements for this tutorial are:

• pillow - the python imaging library

• tqdm - a simple tool to display progress bars (this is installed automatically as it is a requirement for Hangar)

$ pip install pillow

1. Create and Initialize a Repository

When working with Hangar programatically (the CLI is covered in later tutorials), we always start with the following
import:

4.6. Hangar Tutorial 119

Hangar, Release 0.5.2

[1]: from hangar import Repository

Create the folder where you want to store the Hangar Repository:

[2]: !mkdir /Volumes/Archivio/tensorwerk/hangar/imagenette

and create the Repository object. Note that when you specify a new folder for a Hangar repository, Python shows
you a warning saying that you will need to initialize the repo before starting working on it.

[3]: repo = Repository(path="/Volumes/Archivio/tensorwerk/hangar/imagenette")

//anaconda/envs/hangar-nested/lib/python3.7/site-packages/hangar-0.5.0.dev1-py3.7-
→˓macosx-10.9-x86_64.egg/hangar/context.py:94: UserWarning: No repository exists at /
→˓Volumes/Archivio/tensorwerk/hangar/imagenette/.hangar, please use `repo.init()`
→˓method
warnings.warn(msg, UserWarning)

Initialize the Repository providing your name and your email.

Warning: Please be aware that the remove_old parameter set to True removes and reinitializes a Hangar
repository at the given path.

[4]: repo.init(
user_name="Alessia Marcolini", user_email="alessia@tensorwerk.com", remove_

→˓old=True
)

Hangar Repo initialized at: /Volumes/Archivio/tensorwerk/hangar/imagenette/.hangar

[4]: '/Volumes/Archivio/tensorwerk/hangar/imagenette/.hangar'

2. Open the Staging Area for Writing

A Repository can be checked out in two modes: write-enabled and read-only. We need to checkout the repo in
write mode in order to initialize the columns and write into them.

[5]: master_checkout = repo.checkout(write=True)

A checkout allows access to columns. The columns attribute of a checkout provides the interface to working with
all of the data on disk!

[6]: master_checkout.columns

[6]: Hangar Columns
Writeable : True
Number of Columns : 0
Column Names / Partial Remote References:

-

3. Download and Prepare Some Conventionally Stored Data

To start playing with Hangar, let’s get some data to work on. We’ll be using the Imagenette dataset.

The following commands will download ~96 MB of data to the local directory and decompress the tarball containing
~ 9,200 .jpeg images in the folder data in the current working directory.

120 Chapter 4. Development

https://github.com/fastai/imagenette

Hangar, Release 0.5.2

[7]: !wget https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.tgz -P data

--2020-04-04 13:25:37-- https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-160.
→˓tgz
Resolving s3.amazonaws.com... 52.216.238.197
Connecting to s3.amazonaws.com|52.216.238.197|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 98948031 (94M) [application/x-tar]
Saving to: ‘data/imagenette2-160.tgz’

imagenette2-160.tgz 100%[===================>] 94.36M 4.52MB/s in 22s

2020-04-04 13:26:00 (4.31 MB/s) - ‘data/imagenette2-160.tgz’ saved [98948031/98948031]

[8]: !tar -xzf data/imagenette2-160.tgz -C data

[9]: !wget http://image-net.org/archive/words.txt -P data/imagenette2-160

--2020-04-04 13:26:24-- http://image-net.org/archive/words.txt
Resolving image-net.org... 171.64.68.16
Connecting to image-net.org|171.64.68.16|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2655750 (2.5M) [text/plain]
Saving to: ‘data/imagenette2-160/words.txt’

words.txt 100%[===================>] 2.53M 884KB/s in 2.9s

2020-04-04 13:26:27 (884 KB/s) - ‘data/imagenette2-160/words.txt’ saved [2655750/
→˓2655750]

The dataset directory structure on disk is as follows:

Each subdirectory in the train / val folders (named starting with "n0") contains a few hundred images which
feature objects/elements of a common classification (tench, English springer, cassette player, chain saw, church, French
horn, garbage truck, gas pump, golf ball, parachute, etc.). The image file names follow a convention specific to the
ImageNet project, but can be thought of as essentially random (so long as they are unique).

imagenette2-160
train

n01440764
n02102040
n02979186
n03000684
n03028079
n03394916
n03417042
n03425413
n03445777
n03888257

val
n01440764
n02102040
n02979186

(continues on next page)

4.6. Hangar Tutorial 121

Hangar, Release 0.5.2

(continued from previous page)

n03000684
n03028079
n03394916
n03417042
n03425413
n03445777
n03888257

Classification/Label Data

The labels associated with each image are contained in a seperate .txt file, we download the words.txt to the
directory the images are extracted into.

Reviewing the contents of this file, we will find a mapping of classification codes (subdirectory names starting with
"n0") to human readable descriptions of the contents. A small selection of the file is provided below as an illustration.

n01635343 Rhyacotriton, genus Rhyacotriton
n01635480 olympic salamander, Rhyacotriton olympicus
n01635659 Plethodontidae, family Plethodontidae
n01635964 Plethodon, genus Plethodon
n01636127 lungless salamander, plethodont
n01636352 eastern red-backed salamander, Plethodon cinereus
n01636510 western red-backed salamander, Plethodon vehiculum
n01636675 Desmograthus, genus Desmograthus
n01636829 dusky salamander
n01636984 Aneides, genus Aneides
n01637112 climbing salamander
n01637338 arboreal salamander, Aneides lugubris
n01637478 Batrachoseps, genus Batrachoseps
n01637615 slender salamander, worm salamander
n01637796 Hydromantes, genus Hydromantes

Mapping Classification Codes to Meaningful Descriptors

We begin by reading each line of this file and creating a dictionary to store the corrispondence between ImageNet
synset name and a human readable label.

[10]: from pathlib import Path

dataset_dir = Path("./data/imagenette2-160")

synset_label = {}
with open(dataset_dir / "words.txt", "r") as f:

for line in f.readlines():
synset, label = line.split("\t")
synset_label[synset] = label.rstrip()

Read training data (images and labels) from disk and store them in NumPy arrays.

[11]: import os
from tqdm import tqdm

(continues on next page)

122 Chapter 4. Development

Hangar, Release 0.5.2

(continued from previous page)

import numpy as np
from PIL import Image

[12]: train_images = []
train_labels = []

for synset in tqdm(os.listdir(dataset_dir / "train")):
label = synset_label[synset]

for image_filename in os.listdir(dataset_dir / "train" / synset):
image = Image.open(dataset_dir / "train" / synset / image_filename)
image = image.resize((163, 160))
data = np.asarray(image)

if len(data.shape) == 2: # discard B&W images
continue

train_images.append(data)
train_labels.append(label)

train_images = np.array(train_images)

100%|| 10/10 [00:31<00:00, 3.12s/it]

[13]: train_images.shape

[13]: (9296, 160, 163, 3)

Note: Here we are reading the images from disk and storing them in a big Python list, and then converting it to a
NumPy array. Note that it could be impractical for larger datasets. You might want to consider the idea of reading files
in batch.

Read validation data (images and labels) from disk and store them in NumPy arrays, same as before.

[14]: val_images = []
val_labels = []

for synset in tqdm(os.listdir(dataset_dir / "val")):
label = synset_label[synset]

for image_filename in os.listdir(dataset_dir / "val" / synset):
image = Image.open(dataset_dir / "val" / synset / image_filename)
image = image.resize((163, 160))
data = np.asarray(image)

if len(data.shape) == 2: # discard B&W images
continue

val_images.append(data)
val_labels.append(label)

val_images = np.array(val_images)

100%|| 10/10 [00:12<00:00, 1.22s/it]

4.6. Hangar Tutorial 123

Hangar, Release 0.5.2

[15]: val_images.shape

[15]: (3856, 160, 163, 3)

4. Column initialization

With checkout write-enabled, we can now initialize a new column of the repository using the method
add_ndarray_column().

All samples within a column have the same data type, and number of dimensions. The size of each dimension can be
either fixed (the default behavior) or variable per sample.

You will need to provide a column name and a prototype, so Hangar can infer the shape of the elements contained
in the array. train_im_col will become a column accessor object.

[16]: train_im_col = master_checkout.add_ndarray_column(
name="training_images", prototype=train_images[0]

)

Verify we successfully added the new column:

[17]: master_checkout.columns

[17]: Hangar Columns
Writeable : True
Number of Columns : 1
Column Names / Partial Remote References:

- training_images / False

Get useful information about the new column simply by inspecting train_im_col . . .

[18]: train_im_col

[18]: Hangar FlatSampleWriter
Column Name : training_images
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : uint8
Shape : (160, 163, 3)
Number of Samples : 0
Partial Remote Data Refs : False

. . . or by leveraging the dict-style columns access through the checkout object. They provide the same information.

[19]: master_checkout.columns["training_images"]

[19]: Hangar FlatSampleWriter
Column Name : training_images
Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : uint8
Shape : (160, 163, 3)
Number of Samples : 0

(continues on next page)

124 Chapter 4. Development

Hangar, Release 0.5.2

(continued from previous page)

Partial Remote Data Refs : False

Since Hangar 0.5, it’s possible to have a column with string datatype, and we will be using it to store the labels of our
dataset.

[20]: train_lab_col = master_checkout.add_str_column(name="training_labels")

[21]: train_lab_col

[21]: Hangar FlatSampleWriter
Column Name : training_labels
Writeable : True
Column Type : str
Column Layout : flat
Schema Type : variable_shape
DType : <class 'str'>
Shape : None
Number of Samples : 0
Partial Remote Data Refs : False

5. Adding data

To add data to a named column, we can use dict-style mode (refer to the __setitem__, __getitem__, and
__delitem__ methods) or the update() method. Sample keys can be either str or int type.

[22]: train_im_col[0] = train_images[0]
train_lab_col[0] = train_labels[0]

As we can see, Number of Samples is equal to 1 now.

[23]: master_checkout.columns["training_labels"]

[23]: Hangar FlatSampleWriter
Column Name : training_labels
Writeable : True
Column Type : str
Column Layout : flat
Schema Type : variable_shape
DType : <class 'str'>
Shape : None
Number of Samples : 1
Partial Remote Data Refs : False

[24]: data = {1: train_images[1], 2: train_images[2]}

[25]: train_im_col.update(data)

[26]: train_im_col

[26]: Hangar FlatSampleWriter
Column Name : training_images

(continues on next page)

4.6. Hangar Tutorial 125

Hangar, Release 0.5.2

(continued from previous page)

Writeable : True
Column Type : ndarray
Column Layout : flat
Schema Type : fixed_shape
DType : uint8
Shape : (160, 163, 3)
Number of Samples : 3
Partial Remote Data Refs : False

Let’s add the remaining training images:

[27]: with train_im_col:
for i, img in tqdm(enumerate(train_images), total=train_images.shape[0]):

if i not in [0, 1, 2]:
train_im_col[i] = img

100%|| 9296/9296 [00:36<00:00, 257.92it/s]

[28]: with train_lab_col:
for i, label in tqdm(enumerate(train_labels), total=len(train_labels)):

if i != 0:
train_lab_col[i] = label

100%|| 9296/9296 [00:01<00:00, 5513.23it/s]

[29]: train_lab_col

[29]: Hangar FlatSampleWriter
Column Name : training_labels
Writeable : True
Column Type : str
Column Layout : flat
Schema Type : variable_shape
DType : <class 'str'>
Shape : None
Number of Samples : 9296
Partial Remote Data Refs : False

Both the training_images and the training_labels have 9296 samples. Great!

Note: To get an overview of the different ways you could add data to a Hangar repository (also from a performance
point of view), please refer to the Performance section of the Hangar Tutorial Part 1.

6. Committing changes

Once you have made a set of changes you want to commit, simply call the commit() method and specify a message.

The returned value (a=ecc943c89b9b09e41574c9849f11937828fece28) is the commit hash of this com-
mit.

[30]: master_checkout.commit("Add Imagenette training images and labels")

126 Chapter 4. Development

Hangar, Release 0.5.2

[30]: 'a=ecc943c89b9b09e41574c9849f11937828fece28'

Let’s add the validation data to the repository . . .

[31]: val_im_col = master_checkout.add_ndarray_column(
name="validation_images", prototype=val_images[0]

)
val_lab_col = master_checkout.add_str_column(name="validation_labels")

[32]: with val_im_col, val_lab_col:
for img, label in tqdm(zip(val_images, val_labels), total=len(val_labels)):

val_im_col[i] = img
val_lab_col[i] = label

100%|| 3856/3856 [00:08<00:00, 474.25it/s]

. . . and commit!

[33]: master_checkout.commit("Add Imagenette validation images and labels")

[33]: 'a=e31ef9a06c8d1a4cefeb52c336b2c33d1dca3fba'

To view the history of your commits:

[34]: master_checkout.log()

* a=e31ef9a06c8d1a4cefeb52c336b2c33d1dca3fba (master) : Add Imagenette validation
→˓images and labels

* a=ecc943c89b9b09e41574c9849f11937828fece28 : Add Imagenette training images and
→˓labels

[35]: master_checkout.close()

Let’s inspect the repository state! This will show disk usage information, the details of the last commit and all the
information about the dataset columns.

[36]: repo.summary()

Summary of Contents Contained in Data Repository

==================
Repository Info
Base Directory: /Volumes/Archivio/tensorwerk/hangar/imagenette
Disk Usage: 862.09 MB

===================
Commit Details
Commit: a=e31ef9a06c8d1a4cefeb52c336b2c33d1dca3fba
Created: Sat Apr 4 11:29:12 2020
By: Alessia Marcolini
Email: alessia@tensorwerk.com
Message: Add Imagenette validation images and labels

==================
DataSets

(continues on next page)

4.6. Hangar Tutorial 127

Hangar, Release 0.5.2

(continued from previous page)

| Number of Named Columns: 4
|
| * Column Name: ColumnSchemaKey(column="training_images", layout="flat")
| Num Data Pieces: 9296
| Details:
| - column_layout: flat
| - column_type: ndarray
| - schema_type: fixed_shape
| - shape: (160, 163, 3)
| - dtype: uint8
| - backend: 01
| - backend_options: {'complib': 'blosc:lz4hc', 'complevel': 5, 'shuffle': 'byte'}
|
| * Column Name: ColumnSchemaKey(column="training_labels", layout="flat")
| Num Data Pieces: 9296
| Details:
| - column_layout: flat
| - column_type: str
| - schema_type: variable_shape
| - dtype: <class'str'>
| - backend: 30
| - backend_options: {}
|
| * Column Name: ColumnSchemaKey(column="validation_images", layout="flat")
| Num Data Pieces: 1
| Details:
| - column_layout: flat
| - column_type: ndarray
| - schema_type: fixed_shape
| - shape: (160, 163, 3)
| - dtype: uint8
| - backend: 01
| - backend_options: {'complib': 'blosc:lz4hc', 'complevel': 5, 'shuffle': 'byte'}
|
| * Column Name: ColumnSchemaKey(column="validation_labels", layout="flat")
| Num Data Pieces: 1
| Details:
| - column_layout: flat
| - column_type: str
| - schema_type: variable_shape
| - dtype: <class'str'>
| - backend: 30
| - backend_options: {}

==================
Metadata:
Number of Keys: 0

Great! You’ve made it until the end of the “Real World” Quick Start Tutorial!!

Please check out the other tutorials for more advanced stuff such as branching & merging, conflicts resolution and data
loaders for TensorFlow and PyTorch!

128 Chapter 4. Development

Hangar, Release 0.5.2

4.7 Hangar Under The Hood

Warning: The usage info displayed in the latest build of the project documentation do not reflect recent
changes to the API and internal structure of the project. They should not be relied on at the current moment; they
will be updated over the next weeks, and will be in line before the next release.

At its core, Hangar is a content addressable data store whose design requirements were inspired by the Git version
control system.

4.7.1 Things In Life Change, Your Data Shouldn’t

When designing a high performance data version control system, achieving performance goals while ensuring consis-
tency is incredibly difficult. Memory is fast, disk is slow; not much we can do about it. But since Hangar should deal
with any numeric data in an array of any size (with an enforced limit of 31 dimensions in a sample. . .) we have to find
ways to work with the disk, not against it.

Upon coming to terms with this face, we are actually presented with a problem once we realize that we live in the real
world, and real world is ugly. Computers crash, processes get killed, and people do * interesting * things. Because
of this, It is a foundational design principle for us to guarantee that once Hangar says data has been successfully
added to the repository, it is actually persisted. This essentially means that any process which interacts with data
records on disk must be stateless. If (for example) we were to keep a record of all data added to the staging area in an
in-memory list, and the process gets killed, we may have just lost references to all of the array data, and may not even
be sure that the arrays were flushed to disk properly. These situations are a NO-GO from the start, and will always
remain so.

So, we come to the first design choice: read and write actions are atomic. Once data is added to a Hangar repository,
the numeric array along with the necessary book-keeping records will always occur transactionally, ensuring that when
something unexpected happens, the data and records are committed to disk.

Note: The atomicity of interactions is completely hidden from a normal user; they shouldn’t have to care about this or
even know this exists. However, this is also why using the context-manager style column interaction scheme can result
in ~2x times speedup on writes/reads. We can just pass on most of the work to the Python contextlib package
instead of having to begin and commit/abort (depending on interaction mode) transactions with every call to an add or
get method.

4.7.2 Data Is Large, We Don’t Waste Space

From the very beginning we knew that while it would be easy to just store all data in every commit as independent
arrays on disk, such a naive implementation would just absolutely eat up disk space for any repository with a non-
trivial history. Hangar commits should be fast and use minimal disk space, duplicating data just doesn’t make sense
for such a system. And so we decided on implementing a content addressable data store backend.

When a user requests to add data to a Hangar repository, one of the first operations which occur is to generate a hash
of the array contents. If the hash does not match a piece of data already placed in the Hangar repository, the data is
sent to the appropriate storage backend methods. On success, the backend sends back some arbitrary specification
which can be used to retrieve that same piece of data from that particular backend. The record backend then stores a
key/value pair of (hash, backend_specification).

Note: The record backend stores hash information in a separate location from the commit references (which associate

4.7. Hangar Under The Hood 129

Hangar, Release 0.5.2

a (columnname, sample name/id) to a sample_hash). This let’s us separate the historical repository information from
a particular computer’s location of a data piece. All we need in the public history is to know that some data with a
particular hash is associated with a commit. No one but the system which actually needs to access the data needs to
know where it can be found.

On the other hand, if a data sample is added to a repository which already has a record of some hash, we don’t even
involve the storage backend. All we need to do is just record that a new sample in a column was added with that hash.
It makes no sense to write the same data twice.

This method can actually result in massive space savings for some common use cases. For the MNIST column, the
training label data is typically a 1D-array of size 50,000. Because there are only 10 labels, we only need to store 10
ints on disk, and just keep references to the rest.

4.7.3 The Basics of Collaboration: Branching and Merging

Up to this point, we haven’t actually discussed much about how data and records are treated on disk. We’ll leave an
entire walkthrough of the backend record structure for another tutorial, but let’s introduce the basics here, and see how
we enable the types of branching and merging operations you might be used to with source code (at largely the same
speed!).

Here’s a few core principles to keep in mind:

Numbers == Numbers

Hangar has no concept of what a piece of data is outside of a string of bytes / numerical array, and most importantly,
hangar does not care; Hangar is a tool, and we leave it up to you to know what your data actually means)!

At the end of the day when the data is placed into some collection on disk, the storage backend we use won’t care
either. In fact, this is the entire reason why Hangar can do what it can; we don’t attempt to treat data as anything other
then a series of bytes on disk!

The fact that Hangar does not care about what your data represents is a fundamental underpinning of how the system
works under the hood. It is the designed and intended behavior of Hangar to dump arrays to disk in what would seem
like completely arbitrary buffers/locations to an outside observer. And for the most part, they would be essentially
correct in their observation that data samples on disk are in strange locations.

While there is almost no organization or hierarchy for the actual data samples when they are stored on disk, that is not
to say that they are stored without care! We may not care about global trends, but we do care a great deal about the
byte order/layout, sequentiality, chunking/compression and validations operations which are applied across the bytes
which make up a data sample.

In other words, we optimize for utility and performance on the backend, not so that a human can understand the file
format without a computer! After the array has been saved to disk, all we care about is that bookkeeper can record
some unique information about where some piece of content is, and how we can read it. None of that information is
stored alongside the data itself - Remember: numbers are just numbers - they don’t have any concept of what
they are.

Records != Numbers

The form numerical data takes once dumped on disk is completely irrelevant to the specifications of records in the
repository history.

Now, let’s unpack this for a bit. We know from Numbers == Numbers that data is saved to disk in some arbitrary
locations with some arbitrary backend. We also know from Data Is Large, We Don’t Waste Space that the permanent
repository information only contains a record which links a sample name to a hash. We also assert that there is also

130 Chapter 4. Development

Hangar, Release 0.5.2

a mapping of hash to storage backend specification kept somewhere (doesn’t matter what that mapping is for the
moment). With those 3 pieces of information, it’s obvious that once data is placed in the repository, we don’t actually
need to interact with it to understand the accounting of what was added when!

In order to make a commit, we just pack up all the records which existed in the staging area, create a hash of the
records (including the hash of any parent commits), and then store the commit hash mapping alongside details such as
the commit user/email and commit message, and a compressed version of the full commit records as they existed at
that point in time.

Note: That last point “storing a compressed version of the full commit records”, is semi inefficient, and will be
changed in the future so that unchanged records are note duplicated across commits.

An example is given below of the keys -> values mapping which stores each of the staged records, and which are
packed up / compressed on commit (and subsequently unpacked on checkout!).

Num asets 'a.' -> '2'

Name of aset -> num samples || 'a.train_images' -> '10'
Name of data -> hash || 'a.train_images.0' -> BAR_HASH_1'
Name of data -> hash || 'a.train_images.1' -> BAR_HASH_2'
Name of data -> hash || 'a.train_images.2' -> BAR_HASH_3'
Name of data -> hash || 'a.train_images.3' -> BAR_HASH_4'
Name of data -> hash || 'a.train_images.4' -> BAR_HASH_5'
Name of data -> hash || 'a.train_images.5' -> BAR_HASH_6'
Name of data -> hash || 'a.train_images.6' -> BAR_HASH_7'
Name of data -> hash || 'a.train_images.7' -> BAR_HASH_8'
Name of data -> hash || 'a.train_images.8' -> BAR_HASH_9'
Name of data -> hash || 'a.train_images.9' -> BAR_HASH_0'

Name of aset -> num samples || 'a.train_labels' -> '10'
Name of data -> hash || 'a.train_labels.0' -> BAR_HASH_11'
Name of data -> hash || 'a.train_labels.1' -> BAR_HASH_12'
Name of data -> hash || 'a.train_labels.2' -> BAR_HASH_13'
Name of data -> hash || 'a.train_labels.3' -> BAR_HASH_14'
Name of data -> hash || 'a.train_labels.4' -> BAR_HASH_15'
Name of data -> hash || 'a.train_labels.5' -> BAR_HASH_16'
Name of data -> hash || 'a.train_labels.6' -> BAR_HASH_17'
Name of data -> hash || 'a.train_labels.7' -> BAR_HASH_18'
Name of data -> hash || 'a.train_labels.8' -> BAR_HASH_19'
Name of data -> hash || 'a.train_labels.9' -> BAR_HASH_10'

's.train_images' -> '{"schema_hash": "RM4DefFsjRs=",

"schema_dtype": 2,
"schema_is_var": false,
"schema_max_shape": [784],
"schema_is_named": true}'

's.train_labels' -> '{"schema_hash":
"ncbHqE6Xldg=",
"schema_dtype": 7,
"schema_is_var": false,
"schema_max_shape": [1],
"schema_is_named": true}'

4.7. Hangar Under The Hood 131

Hangar, Release 0.5.2

History is Relative

Though it may be a bit obvious to state, it is of critical importance to realize that it is only because we store the
full contents of the repository staging area as it existed in the instant just prior to a commit, that the integrity of full
repository history can be verified from a single commit’s contents and expected hash value. More so, any single
commit has only a topical relationship to a commit at any other point in time. It is only our imposition of a commit’s
ancestry tree which actualizes any subsequent insights or interactivity

While the general process of topological ordering: create branch, checkout branch, commit a few times, and merge,
follows the git model fairly well at a conceptual level, there are some important differences we want to highlight due
to their implementation differences:

1) Multiple commits can simultaneously checked out in “read-only” mode on a single machine. Checking out a
commit for reading does not touch the staging area status.

2) Only one process can interact with the a write-enabled checkout at a time.

3) A detached head CANNOT exist for write enabled checkouts. A staging area must begin with an identical state
to the most recent commit of a/any branch.

4) A staging area which has had changes made in it cannot switch base branch without either a commit, hard-reset,
or (soon to be developed) stash operation.

When a repository is initialized, a record is created which indicates the staging area’s HEAD branch. in addition, a
branch is created with the name master, and which is the only commit in the entire repository which will have no
parent. The record key/value pairs resemble the following:

'branch.master' -> '' # No parent commit.
'head' -> 'branch.master' # Staging area head branch

Commit Hash | Parent Commit

Warning: Much like git, odd things can happen before the ‘initial commit’ is made. We recommend creating the
initial commit as quickly as possible to prevent undefined behavior during repository setup. In the future, we may
decide to create the “initial commit” automatically upon repository initialization.

Once the initial commit is made, a permanent commit record in made which specifies the records (not shown below)
and the parent commit. The branch head pointer is then updated to point to that commit as it’s base.

'branch.master' -> '479b4cfff6219e3d'
'head' -> 'branch.master'

Commit Hash | Parent Commit

'479b4cfff6219e3d' -> ''

Branches can be created as cheaply as a single line of text can be written, and they simply require a “root” commit
hash (or a branch name, in which case the branch’s current HEAD commit will be used as the root HEAD). Likewise
a branch can be merged with just a single write operation (once the merge logic has completed - a process which is
explained separately from this section; just trust that it happens for now).

A more complex example which creates 4 different branches and merges them in a complicated order can be seen
below. Please note that the ‘‘ << ‘‘ symbol is used to indicate a merge commit where X << Y reads: 'merging dev
branch Y into master branch X'.

132 Chapter 4. Development

Hangar, Release 0.5.2

'branch.large_branch' -> '8eabd22a51c5818c'
'branch.master' -> '2cd30b98d34f28f0'
'branch.test_branch' -> '1241a36e89201f88'
'branch.trydelete' -> '51bec9f355627596'
'head' -> 'branch.master'

Commit Hash | Parent Commit

'1241a36e89201f88' -> '8a6004f205fd7169'
'2cd30b98d34f28f0' -> '9ec29571d67fa95f << 51bec9f355627596'
'51bec9f355627596' -> 'd683cbeded0c8a89'
'69a09d87ea946f43' -> 'd683cbeded0c8a89'
'8a6004f205fd7169' -> 'a320ae935fc3b91b'
'8eabd22a51c5818c' -> 'c1d596ed78f95f8f'
'9ec29571d67fa95f' -> '69a09d87ea946f43 << 8eabd22a51c5818c'
'a320ae935fc3b91b' -> 'e3e79dd897c3b120'
'c1d596ed78f95f8f' -> ''
'd683cbeded0c8a89' -> 'fe0bcc6a427d5950 << 1241a36e89201f88'
'e3e79dd897c3b120' -> 'c1d596ed78f95f8f'
'fe0bcc6a427d5950' -> 'e3e79dd897c3b120'

Because the raw commit hash logs can be quite dense to parse, a graphical logging utility is included as part of the
repository. Running the Repository.log() method will pretty print a graph representation of the commit history:

>>> from hangar import Repository
>>> repo = Repository(path='/foo/bar/path/')

... # make some commits

>>> repo.log()

4.7. Hangar Under The Hood 133

Hangar, Release 0.5.2

4.8 Hangar CLI Documentation

The CLI described below is automatically available after the Hangar Python package has been installed (either through
a package manager or via source builds). In general, the commands require the terminals cwd to be at the same level
the repository was initially created in.

Simply start by typing $ hangar --help in your terminal to get started!

134 Chapter 4. Development

Hangar, Release 0.5.2

4.8.1 hangar

hangar [OPTIONS] COMMAND [ARGS]...

Options

--version
display current Hangar Version

branch

operate on and list branch pointers.

hangar branch [OPTIONS] COMMAND [ARGS]...

create

Create a branch with NAME at STARTPOINT (short-digest or branch)

If no STARTPOINT is provided, the new branch is positioned at the HEAD of the staging area branch, automatically.

hangar branch create [OPTIONS] NAME [STARTPOINT]

Arguments

NAME
Required argument

STARTPOINT
Optional argument

delete

Remove a branch pointer with the provided NAME

The NAME must be a branch present on the local machine.

hangar branch delete [OPTIONS] NAME

Options

-f, --force
flag to force delete branch which has un-merged history.

Arguments

NAME
Required argument

4.8. Hangar CLI Documentation 135

Hangar, Release 0.5.2

list

list all branch names

Includes both remote branches as well as local branches.

hangar branch list [OPTIONS]

checkout

Checkout writer head branch at BRANCHNAME.

This method requires that no process currently holds the writer lock. In addition, it requires that the contents of the
staging area are ‘CLEAN’ (no changes have been staged).

hangar checkout [OPTIONS] BRANCHNAME

Arguments

BRANCHNAME
Required argument

clone

Initialize a repository at the current path and fetch updated records from REMOTE.

Note: This method does not actually download the data to disk. Please look into the fetch-data command.

hangar clone [OPTIONS] REMOTE

Options

--name <name>
first and last name of user

--email <email>
email address of the user

--overwrite
overwrite a repository if it exists at the current path

Arguments

REMOTE
Required argument

column

Operations for working with columns in the writer checkout.

136 Chapter 4. Development

Hangar, Release 0.5.2

hangar column [OPTIONS] COMMAND [ARGS]...

create

Create an column with NAME and DTYPE of SHAPE.

The column will be created in the staging area / branch last used by a writer-checkout. Valid NAMEs contain only
ascii letters and ['.', '_', '-'] (no whitespace). The DTYPE must be one of ['UINT8', 'INT8', 'UINT16',
'INT16', 'UINT32', 'INT32', 'UINT64', 'INT64', 'FLOAT16', 'FLOAT32', 'FLOAT64', 'STR'].

If a ndarray dtype is specified (not ‘STR’), then the SHAPE must be the last argument(s) specified, where each
dimension size is identified by a (space seperated) list of numbers.

Examples:

To specify, an column for some training images of dtype uint8 and shape (256, 256, 3) we should say:

$ hangar column create train_images UINT8 256 256 3

To specify that the samples can be variably shaped (have any dimension size up to the maximum SHAPE specified)
we would say:

$ hangar column create train_images UINT8 256 256 3 --variable-shape

or equivalently:

$ hangar column create --variable-shape train_images UINT8 256 256 3

To specify that the column contains a nested set of subsample data under a common sample key, the
--contains-subsamples flag can be used.

$ hangar column create --contains-subsamples train_images UINT8 256 256 3

hangar column create [OPTIONS] NAME [UINT8|INT8|UINT16|INT16|UINT32|INT32|UINT
64|INT64|FLOAT16|FLOAT32|FLOAT64|STR] [SHAPE]...

Options

--variable-shape
flag indicating sample dimensions can be any size up to max shape.

--contains-subsamples
flag indicating if this is a column which nests multiple subsamples under a common sample key.

Arguments

NAME
Required argument

DTYPE
Required argument

SHAPE
Optional argument(s)

4.8. Hangar CLI Documentation 137

Hangar, Release 0.5.2

remove

Delete the column NAME (and all samples) from staging area.

The column will be removed from the staging area / branch last used by a writer-checkout.

hangar column remove [OPTIONS] NAME

Arguments

NAME
Required argument

commit

Commits outstanding changes.

Commit changes to the given files into the repository. You will need to ‘push’ to push up your changes to other
repositories.

hangar commit [OPTIONS]

Options

-m, --message <message>
The commit message. If provided multiple times each argument gets converted into a new line.

diff

Display diff of DEV commit/branch to MASTER commit/branch.

If no MASTER is specified, then the staging area branch HEAD will will be used as the commit digest for MASTER.
This operation will return a diff which could be interpreted as if you were merging the changes in DEV into MASTER.

TODO: VERIFY ORDER OF OUTPUT IS CORRECT.

hangar diff [OPTIONS] DEV [MASTER]

Arguments

DEV
Required argument

MASTER
Optional argument

138 Chapter 4. Development

Hangar, Release 0.5.2

export

Export COLUMN sample data as it existed a STARTPOINT to some format and path.

Specifying which sample to be exported is possible by using the switch --sample (without this, all the samples in
the given column will be exported). Since hangar supports both int and str datatype for the sample name, specifying
that while mentioning the sample name might be necessary at times. It is possible to do that by separating the name
and type by a colon.

Example:

1. if the sample name is string of numeric 10 - str:10 or 10

2. if the sample name is sample1 - str:sample1 or sample1

3. if the sample name is an int, let say 10 - int:10

hangar export [OPTIONS] COLUMN [STARTPOINT]

Options

-o, --out <outdir>
Directory to export data

-s, --sample <sample>
Sample name to export. Default implementation is to interpret all input names as string type. As an column can
contain samples with both str and int types, we allow you to specify name type of the sample. To identify
a potentially ambiguous name, we allow you to prepend the type of sample name followed by a colon and then
the sample name (ex. str:54 or int:54). this can be done for any sample key.

-f, --format <format_>
File format of output file

--plugin <plugin>
override auto-inferred plugin

Arguments

COLUMN
Required argument

STARTPOINT
Optional argument

fetch

Retrieve the commit history from REMOTE for BRANCH.

This method does not fetch the data associated with the commits. See fetch-data to download the tensor data
corresponding to a commit.

hangar fetch [OPTIONS] REMOTE BRANCH

4.8. Hangar CLI Documentation 139

Hangar, Release 0.5.2

Arguments

REMOTE
Required argument

BRANCH
Required argument

fetch-data

Get data from REMOTE referenced by STARTPOINT (short-commit or branch).

The default behavior is to only download a single commit’s data or the HEAD commit of a branch. Please review
optional arguments for other behaviors

hangar fetch-data [OPTIONS] REMOTE STARTPOINT

Options

-d, --column <column>
specify any number of column keys to fetch data for.

-n, --nbytes <nbytes>
total amount of data to retrieve in MB/GB.

-a, --all-history
Retrieve data referenced in every parent commit accessible to the STARTPOINT

Arguments

REMOTE
Required argument

STARTPOINT
Required argument

import

Import file or directory of files at PATH to COLUMN in the staging area.

If passing in a directory, all files in the directory will be imported, if passing in a file, just that files specified will be
imported

hangar import [OPTIONS] COLUMN PATH

Options

--branch <branch>
branch to import data

--plugin <plugin>
override auto-infered plugin

140 Chapter 4. Development

Hangar, Release 0.5.2

--overwrite
overwrite data samples with the same name as the imported data file

Arguments

COLUMN
Required argument

PATH
Required argument

init

Initialize an empty repository at the current path

hangar init [OPTIONS]

Options

--name <name>
first and last name of user

--email <email>
email address of the user

--overwrite
overwrite a repository if it exists at the current path

log

Display commit graph starting at STARTPOINT (short-digest or name)

If no argument is passed in, the staging area branch HEAD will be used as the starting point.

hangar log [OPTIONS] [STARTPOINT]

Arguments

STARTPOINT
Optional argument

push

Upload local BRANCH commit history / data to REMOTE server.

hangar push [OPTIONS] REMOTE BRANCH

4.8. Hangar CLI Documentation 141

Hangar, Release 0.5.2

Arguments

REMOTE
Required argument

BRANCH
Required argument

remote

Operations for working with remote server references

hangar remote [OPTIONS] COMMAND [ARGS]...

add

Add a new remote server NAME with url ADDRESS to the local client.

This name must be unique. In order to update an old remote, please remove it and re-add the remote NAME /
ADDRESS combination

hangar remote add [OPTIONS] NAME ADDRESS

Arguments

NAME
Required argument

ADDRESS
Required argument

list

List all remote repository records.

hangar remote list [OPTIONS]

remove

Remove the remote server NAME from the local client.

This will not remove any tracked remote reference branches.

hangar remote remove [OPTIONS] NAME

Arguments

NAME
Required argument

142 Chapter 4. Development

Hangar, Release 0.5.2

server

Start a hangar server, initializing one if does not exist.

The server is configured to top working in 24 Hours from the time it was initially started. To modify this value, please
see the --timeout parameter.

The hangar server directory layout, contents, and access conventions are similar, though significantly different enough
to the regular user “client” implementation that it is not possible to fully access all information via regular API meth-
ods. These changes occur as a result of the uniformity of operations promised by both the RPC structure and negotia-
tions between the client/server upon connection.

More simply put, we know more, so we can optimize access more; similar, but not identical.

hangar server [OPTIONS]

Options

--overwrite
overwrite the hangar server instance if it exists at the current path.

--ip <ip>
the ip to start the server on. default is localhost

Default localhost

--port <port>
port to start the server on. default in 50051

Default 50051

--timeout <timeout>
time (in seconds) before server is stopped automatically

Default 86400

status

Display changes made in the staging area compared to it’s base commit

hangar status [OPTIONS]

summary

Display content summary at STARTPOINT (short-digest or branch).

If no argument is passed in, the staging area branch HEAD wil be used as the starting point. In order to recieve
a machine readable, and more complete version of this information, please see the Repository.summary()
method of the API.

hangar summary [OPTIONS] [STARTPOINT]

Arguments

STARTPOINT
Optional argument

4.8. Hangar CLI Documentation 143

Hangar, Release 0.5.2

view

Use a plugin to view the data of some SAMPLE in COLUMN at STARTPOINT.

hangar view [OPTIONS] COLUMN SAMPLE [STARTPOINT]

Options

-f, --format <format_>
File format of output file

--plugin <plugin>
Plugin name to use instead of auto-inferred plugin

Arguments

COLUMN
Required argument

SAMPLE
Required argument

STARTPOINT
Optional argument

writer-lock

Determine if the writer lock is held for a repository.

Passing the –force-release flag will instantly release the writer lock, invalidating any process which currently holds it.

hangar writer-lock [OPTIONS]

Options

--force-release
force release writer lock from the CLI.

4.9 Hangar External

High level interaction interface between hangar and everything external.

4.9.1 High Level Methods

High level methods let user interact with hangar without diving into the internal methods of hangar. We have enabled
four basic entry points as high level methods

1. load()

2. save()

3. show()

144 Chapter 4. Development

Hangar, Release 0.5.2

4. board_show()

These entry points by itself is not capable of doing anything. But they are entry points to the same methods in the
hangar.external plugins available in pypi. These high level entry points are used by the CLI for doing import, export
and view operations as well as the hangarboard for visualization (using board_show)

board_show(arr: numpy.ndarray, plugin: str = None, extension: str = None, **plugin_kwargs)
Wrapper to convert the numpy array using the board_show method of the plugin to make it displayable in the
web UI

Parameters

• arr (numpy.ndarray) – Data to process into some human understandable representa-
tion.

• plugin (str, optional) – Name of plugin to use. By default, the preferred plugin
for the given file format tried until a suitable. This cannot be None if extension is also
None

• extension (str, optional) – Format of the file. This is used to infer which plugin
to use in case plugin name is not provided. This cannot be None if plugin is also None

Other Parameters plugin_kwargs (dict) – Plugin specific keyword arguments. If the function is
being called from command line argument, all the unknown keyword arguments will be collected
as plugin_kwargs

load(fpath: str, plugin: str = None, extension: str = None, **plugin_kwargs)→ Tuple[numpy.ndarray, str]
Wrapper to load data from file into memory as numpy arrays using plugin’s load method

Parameters

• fpath (str) – Data file path, e.g. path/to/test.jpg

• plugin (str, optional) – Name of plugin to use. By default, the preferred plugin for
the given file format tried until a suitable. This cannot be None if extension is also None

• extension (str, optional) – Format of the file. This is used to infer which plugin
to use in case plugin name is not provided. This cannot be None if plugin is also None

Other Parameters plugin_kwargs (dict) – Plugin specific keyword arguments. If the function is
being called from command line argument, all the unknown keyword arguments will be collected
as plugin_kwargs

Returns img_array – data returned from the given plugin.

Return type numpy.ndarray

save(arr: numpy.ndarray, outdir: str, sample_det: str, extension: str, plugin: str = None, **plugin_kwargs)
Wrapper plugin save methods which dump numpy.ndarray to disk.

Parameters

• arr (numpy.ndarray) – Numpy array to be saved to file

• outdir (str) – Target directory

• sample_det (str) – Sample name and type of the sample name formatted as
sample_name_type:sample_name

• extension (str) – Format of the file. This is used to infer which plugin to use in case
plugin name is not provided. This cannot be None if plugin is also None

• plugin (str, optional) – Name of plugin to use. By default, the preferred plugin
for the given file format tried until a suitable. This cannot be None if extension is also
None

4.9. Hangar External 145

https://github.com/tensorwerk/hangarboard
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Hangar, Release 0.5.2

Other Parameters plugin_kwargs (dict) – Plugin specific keyword arguments. If the function is
being called from command line argument, all the unknown keyword arguments will be collected
as plugin_kwargs

Notes

CLI or this method does not create the file name where to save. Instead they pass the required details downstream
to the plugins to do that once they verify the given outdir is a valid directory. It is because we expect to get
data entries where one data entry is one file (like images) and also data entries where multiple entries goes to
single file (like CSV). With these ambiguous cases in hand, it’s more sensible to let the plugin handle the file
handling accordingly.

show(arr: numpy.ndarray, plugin: str = None, extension: str = None, **plugin_kwargs)
Wrapper to display numpy.ndarray via plugin show method.

Parameters

• arr (numpy.ndarray) – Data to process into some human understandable representa-
tion.

• plugin (str, optional) – Name of plugin to use. By default, the preferred plugin
for the given file format tried until a suitable. This cannot be None if extension is also
None

• extension (str, optional) – Format of the file. This is used to infer which plugin
to use in case plugin name is not provided. This cannot be None if plugin is also None

Other Parameters plugin_kwargs (dict) – Plugin specific keyword arguments. If the function is
being called from command line argument, all the unknown keyword arguments will be collected
as plugin_kwargs

4.9.2 Plugin System

Hangar’s external plugin system is designed to make it flexible for users to write custom plugins for custom data
formats. External plugins should be python installables and should make itself discoverable using package meta data.
A detailed documentation can be found in the official python doc. But for a headstart and to avoid going through this
somewhat complex process, we have made a cookiecutter package. All the hangar plugins follow the naming standard
similar to Flask plugins i.e hangar_pluginName

class BasePlugin(provides, accepts)
Base plugin class from where all the external plugins should be inherited.

Child classes can have four methods to expose - load, save, show and board_show. These are considered
as valid methods and should be passed as the first argument while initializing the parent from child. Child should
also inform the parent about the acceptable file formats by passing that as second argument. BasePlugin
accepts provides and accepts on init and exposes them which is then used by plugin manager while
loading the modules. BasePlugin also provides sample_name function to figure out the sample name from
the file path. This function is used by load method to return the sample name which is then used by hangar as
a key to save the data

board_show(arr, *args, **kwargs)
Show/display data in hangarboard format.

Hangarboard is capable of displaying three most common data formats: image, text and audio. This
function should process the input numpy.ndarray data and convert it to any of the supported formats.

load(fpath, *args, **kwargs)
Load some data file on disk to recover it in numpy.ndarray form.

146 Chapter 4. Development

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://packaging.python.org/guides/creating-and-discovering-plugins/#using-package-metadata
https://github.com/tensorwerk/cookiecutter-hangar-external-plugin
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Hangar, Release 0.5.2

Loads the data provided from the disk for the file path given and returns the data as numpy.ndarray
and name of the data sample. Names returned from this function will be used by the import cli system as
the key for the returned data. This function can return either a single numpy.ndarray, sample name,
combination, or a generator that produces one of the the above combinations. This helps when the input
file is not a single data entry like an image but has multiple data points like CSV files.

An example implementation that returns a single data point:

def load(self, fpath, *args, **kwargs):
data = create_np_array('myimg.jpg')
name = create_sample_name('myimg.jpg') # could use `self.sample_name`
return data, name

An example implementation that returns a generator could look like this:

def load(self, fpath, *args, **kwargs):
for i, line in enumerate('myfile.csv'):

data = create_np_array(line)
name = create_sample_name(fpath, i)
yield data, name

static sample_name(fpath: os.PathLike)→ str
Sample the name from file path.

This function comes handy since the load() method needs to yield or return both data and sample
name. If there no specific requirements regarding sample name creation, you can use this function which
removes the extension from the file name and returns just the name. For example, if filepath is /path/
to/myfile.ext, then it returns myfile

Parameters fpath (os.PathLike) – Path to the file which is being loaded by load

save(arr, outdir, sample_detail, extension, *args, **kwargs)
Save data in a numpy.ndarray to a specific file format on disk.

If the plugin is developed for files like CSV, JSON, etc - where multiple data entry would go to the same
file - this should check whether the file exist already and weather it should modify / append the new data
entry to the structure, instead of overwriting it or throwing an exception.

Note: Name of the file and the whole path to save the data should be constructed by this function. This can
be done using the information gets as arguments such as, outdir, sample_detail and extension.
It has been offloaded to this function instead of handling it before because, decisions like whether the
multiple data entry should go to a single file or mutltpile file cannot be predicted before hand as are always
data specific (and hence plugin specific)

Note: If the call to this function is initiated by the CLI, sample_detail argument will be a string
formatted as sample_name_type:sample_name. For example, if the sample name is sample1 (and type of
sample name is str) then sample_detail will be str:sample1. This is to avoid the ambiguity that could
arise by having both integer and string form of numerical as the sample name (ex: if column[123] and
column[“123”] exist). Formatting sample_detail to make a proper filename (not necessary) is upto
the plugin developer.

show(arr, *args, **kwargs)
Show/Display the data to the user.

This function should process the input numpy.ndarray and show that to the user using a data dependant
display mechanism. A good example for such a system is matplotlib.pyplot’s plt.show, which

4.9. Hangar External 147

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/os.html#os.PathLike
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Hangar, Release 0.5.2

displays the image data inline in the running terminal / kernel ui.

4.10 Frequently Asked Questions

The following documentation are taken from questions and comments on the Hangar User Group Slack Channel and
over various Github issues.

4.10.1 How can I get an Invite to the Hangar User Group?

Just click on This Signup Link to get started.

4.10.2 Data Integrity

Being a young project did you encounter some situations where the disaster was not a compilation error
but dataset corruption? This is the most fearing aspect of using young projects but every project will start
from a phase before becoming mature and production ready.

An absolute requirement of a system right this is to protect user data at all costs (I’ll refer to this as preserving data
“integrity” from here). During our initial design of the system, we made the decision that preserving integrity comes
above all other system parameters: including performance, disk size, complexity of the Hangar core, and even features
should we not be able to make them absolutely safe for the user. And to be honest, the very first versions of Hangar
were quite slow and difficult to use as a result of this.

The initial versions of Hangar (which we put together in ~2 weeks) had essentially most of the features we have
today. We’ve improved the API, made things clearer, and added some visualization/reporting utilities, but not much
has changed. Essentially the entire development effort has been addressing issues stemming from a fundamental need
to protect user data at all costs. That work has been very successful, and performance is extremely promising (and
improving all the time).

To get into the details here: There have been only 3 instances in the entire time I’ve developed Hangar where we lost
data irrecoverably:

1. We used to move data around between folders with some regularity (as a convenient way to mark some files as
containing data which have been “committed”, and can no longer be opened in anything but read-only mode).
There was a bug (which never made it past a local dev version) at one point where I accidentally called shutil.
rmtree(path) with a directory one level too high. . . that wasn’t great.

Just to be clear, we don’t do this anymore (since disk IO costs are way too high), but remnants of it’s intention
are still very much alive and well. Once data has been added to the repository, and is “committed”, the file
containing that data will never be opened in anything but read-only mode again. This reduces the chance of disk
corruption massively from the start.

2. When I was implementing the numpy memmap array storage backend, I was totally surprised during an early
test when I:

- opened a write-enabled checkout
- added some data
- without committing, retrieved the same data again via the user facing API
- overwrote some slice of the return array with new data and did some processing
- asked Hangar for that same array key again, and instead of returning
the contents got a fatal RuntimeError raised by Hangar with the
code/message indicating "'DATA CORRUPTION ERROR: Checksum {cksum} !=
recorded for {hashVal}"

148 Chapter 4. Development

https://hangarusergroup.slack.com
https://join.slack.com/t/hangarusergroup/shared_invite/enQtNjQ0NzM5ODQ1NjY1LWZlYmIzNTQ0ODZmOTAwMmNmOTgzZTAzM2NhMWE2MTNlMTRhMzNhN2Y3YmJmMjcwZDgxNDIyMDM1MzVhYzk4MjU

Hangar, Release 0.5.2

What had happened was that when opening a numpy.memmap array on disk in w+ mode, the default be-
havior when returning a subarray is to return a subclass of np.ndarray of type np.memmap. Though the
numpy docs state: “The memmap object can be used anywhere an ndarray is accepted. Given a memmap fp,
isinstance(fp, numpy.ndarray) returns True”. I did not anticipate that updates to the subarray slice
would also update the memmap on disk. A simple mistake to make; this has since been remedied by manually
instantiating a new np.ndarray instance from the np.memmap subarray slice buffer.

However, the nice part is that this was a real world proof that our system design worked (and not just in tests).
When you add data to a Hangar checkout (or receive it on a fetch/clone operation) we calculate a hash digest of
the data via blake2b (a cryptographically secure algorithm in the python standard library). While this allows
us to cryptographically verify full integrity checks and history immutability, cryptographic hashes are slow by
design. When we want to read local data (which we’ve already ensured was correct when it was placed on disk)
it would be prohibitively slow to do a full cryptographic verification on every read. However, since its NOT
acceptable to provide no integrity verification (even for local writes) we compromise with a much faster (though
non cryptographic) hash digest/checksum. This operation occurs on EVERY read of data from disk.

The theory here is that even though Hangar makes every effort to guarantee safe operations itself, in the real
world we have to deal with systems which break. We’ve planned for cases where some OS induced disk cor-
ruption occurs, or where some malicious actor modifies the file contents manually; we can’t stop that from
happening, but Hangar can make sure that you will know about it when it happens!

3. Before we got smart with the HDF5 backend low level details, it was an issue for us to have a write-enabled
checkout attempt to write an array to disk and immediately read it back in. I’ll gloss over the details for the sake
of simplicity here, but basically I was presented with an CRC32 Checksum Verification Failed error in some
edge cases. The interesting bit was that if I closed the checkout, and reopened it, it data was secure and intact on
disk, but for immediate reads after writes, we weren’t propagating changes to the HDF5 chunk metadata cache
to rw operations appropriately.

This was fixed very early on by taking advantage of a new feature in HDF5 1.10.4 referred to as Single Writer
Multiple Reader (SWMR). The long and short is that by being careful to handle the order in which a new HDF5
file is created on disk and opened in w and r mode with SWMR enabled, the HDF5 core guarantees the integrity
of the metadata chunk cache at all times. Even if a fatal system crash occurs in the middle of a write, the data
will be preserved. This solved this issue completely for us

There are many many many more details which I could cover here, but the long and short of it is that in order to
ensure data integrity, Hangar is designed to not let the user do anything they aren’t allowed to at any time

• Read checkouts have no ability to modify contents on disk via any method. It’s not possible for them to
actually delete or overwrite anything in any way.

• Write checkouts can only ever write data. The only way to remove the actual contents of writ-
ten data from disk is if changes have been made in the staging area (but not committed) and the
reset_staging_area() method is called. And even this has no ability to remove any data which
had previously existed in some commit in the repo’s history

In addition, a Hangar checkout object is not what it appears to be (at first glance, use, or even during common
introspection operations). If you try to operate on it after closing the checkout, or holding it while another
checkout is started, you won’t be able to (there’s a whole lot of invisible “magic” going on with weakrefs,
objectproxies, and instance attributes). I would encourage you to do the following:

>>> co = repo.checkout(write=True)
>>> co.metadata['hello'] = 'world'
>>> # try to hold a reference to the metadata object:
>>> mRef = co.metadata
>>> mRef['hello']
'world'

(continues on next page)

4.10. Frequently Asked Questions 149

Hangar, Release 0.5.2

(continued from previous page)

>>> co.commit('first commit')
>>> co.close()
>>> # what happens when you try to access the `co` or `mRef` object?
>>> mRef['hello']
ReferenceError: weakly-referenced object no longer exists
>>> print(co) # or any other operation
PermissionError: Unable to operate on past checkout objects which have been
→˓closed. No operation occurred. Please use a new checkout.

The last bit I’ll leave you with is a note on context managers and performance (how we handle record data safety
and effectively

See also:

• Hangar Tutorial (Part 1, In section: “performance”)

• Hangar Under The Hood

4.10.3 How Can a Hangar Repository be Backed Up?

Two strategies exist:

1. Use a remote server and Hangar’s built in ability to just push data to a remote! (tutorial coming soon, see Python
API for more details.

2. A Hangar repository is self contained in it’s .hangar directory. To back up the data, just copy/paste or rsync it to
another machine! (edited)

4.10.4 On Determining Column Schema Sizes

Say I have a data group that specifies a data array with one dimension, three elements (say height, width,
num channels) and later on I want to add bit depth. Can I do that, or do I need to make a new data group?
Should it have been three scalar data groups from the start?

So right now it’s not possible to change the schema (shape, dtype) of a column. I’ve thought about such a feature for
a while now, and while it will require a new user facing API option, its (almost) trivial to make it work in the core. It
just hasn’t seemed like a priority yet. . .

And no, I wouldn’t specify each of those as scalar data groups, they are a related piece of information, and generally
would want to be accessed together

Access patterns should generally dictate how much info is placed in a column

Is there a performance/space penalty for having lots of small data groups?

As far as a performance / space penalty, this is where it gets good :)

• Using fewer columns means that there are fewer records (the internal locating info, kind-of like a git tree) to
store, since each record points to a sample containing more information.

• Using more columns means that the likelihood of samples having the same value increases, meaning fewer
pieces of data are actually stored on disk (remember it’s a content addressable file store)

However, since the size of a record (40 bytes or so before compression, and we generally see compression ratios
around 15-30% of the original size once the records are committed) is generally negligible compared to the size of

150 Chapter 4. Development

Hangar, Release 0.5.2

data on disk, optimizing for number of records is just way overkill. For this case, it really doesn’t matter. Optimize
for ease of use

Note: The following documentation contains highly technical descriptions of the data writing and loading backends
of the Hangar core. It is intended for developer use only, with the functionality described herein being completely
hidden from regular users.

Any questions or comments can be directed to the Hangar Github Issues Page

4.11 Backend selection

Definition and dynamic routing to Hangar backend implementations.

This module defines the available backends for a Hangar installation & provides dynamic routing of method calls to
the appropriate backend from a stored record specification.

4.11.1 Identification

A two character ascii code identifies which backend/version some record belongs to. Valid characters are the union of
ascii_lowercase, ascii_uppercase, and ascii_digits:

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

Though stored as bytes in the backend, we use human readable characters (and not unprintable bytes) to aid in human
tasks like developer database dumps and debugging. The characters making up the two digit code have the following
symantic meanings:

• First Character (element 0) indicates the backend type used.

• Second character (element 1) indicates the version of the backend type which should be used to parse the
specification & accesss data (more on this later)

The number of codes possible (a 2-choice permutation with repetition) is: 3844 which we anticipate to be more then
sufficient long into the future. As a convention, the range of values in which the first digit of the code falls into can be
used to identify the storage medium location:

• Lowercase ascii_letters & digits [0, 1, 2, 3, 4] -> reserved for backends handling data on the
local disk.

• Uppercase ascii_letters & digits [5, 6, 7, 8, 9] -> reserved for backends referring to data resid-
ing on a remote server.

This is not a hard and fast rule though, and can be changed in the future if the need arises.

4.11.2 Process & Guarantees

In order to maintain backwards compatibility across versions of Hangar into the future the following ruleset is specified
and MUST BE HONORED:

• When a new backend is proposed, the contributor(s) provide the class with a meaningful name (HDF5, NUMPY,
TILEDB, etc) identifying the backend to Hangar developers. The review team will provide:

– backend type code

– version code

4.11. Backend selection 151

https://github.com/tensorwerk/hangar-py/issues

Hangar, Release 0.5.2

which all records related to that implementation identify themselves with. In addition, Externally facing
classes / methods go by a canonical name which is the concatenation of the meaningful name and as-
signed "format code" ie. for backend name: 'NUMPY' assigned type code: '1' and version
code: '0' must start external method/class names with: NUMPY_10_foo

• Once a new backend is accepted, the code assigned to it is PERMANENT & UNCHANGING. The same code
cannot be used in the future for other backends.

• Each backend independently determines the information it needs to log/store to uniquely identify and retrieve a
sample stored by it. There is no standard format, each is free to define whatever fields they find most convenient.
Unique encode/decode methods are defined in order to serialize this information to bytes and then reconstruct
the information later. These bytes are what are passed in when a retrieval request is made, and returned when a
storage request for some piece of data is performed.

• Once accepted, The record format specified (ie. the byte representation described above) cannot be modified in
any way. This must remain permanent!

• Backend (internal) methods can be updated, optimized, and/or changed at any time so long as:

– No changes to the record format specification are introduced

– Data stored via any previous iteration of the backend’s accessor methods can be retrieved bitwise exactly
by the “updated” version.

Before proposing a new backend or making changes to this file, please consider reaching out to the Hangar core
development team so we can guide you through the process.

4.11.3 Backend Specifications

Local HDF5 Backend

Local HDF5 Backend Implementation, Identifier: HDF5_00

Backend Identifiers

• Backend: 0

• Version: 0

• Format Code: 00

• Canonical Name: HDF5_00

Storage Method

• Data is written to specific subarray indexes inside an HDF5 “dataset” in a single HDF5 File.

• In each HDF5 File there are COLLECTION_COUNT “datasets” (named ["0" : "{COLLECTION_COUNT}
"]). These are referred to as "dataset number"

• Each dataset is a zero-initialized array of:

– dtype: {schema_dtype}; ie np.float32 or np.uint8

– shape: (COLLECTION_SIZE, *{schema_shape.size}); ie (500, 10) or (500, 300).
The first index in the dataset is referred to as a collection index. See technical note below for
detailed explanation on why the flatten operaiton is performed.

152 Chapter 4. Development

Hangar, Release 0.5.2

• Compression Filters, Chunking Configuration/Options are applied globally for all datasets in a file at dataset
creation time.

• On read and write of all samples the xxhash64_hexdigest is calculated for the raw array bytes. This is to ensure
that all data in == data out of the hdf5 files. That way even if a file is manually edited (bypassing fletcher32
filter check) we have a quick way to tell that things are not as they should be.

Compression Options

Accepts dictionary containing keys

• backend == "00"

• complib

• complevel

• shuffle

Blosc-HDF5

• complib valid values:

– 'blosc:blosclz',

– 'blosc:lz4',

– 'blosc:lz4hc',

– 'blosc:zlib',

– 'blosc:zstd'

• complevel valid values: [0, 9] where 0 is “no compression” and 9 is “most compression”

• shuffle valid values:

– None

– 'none'

– 'byte'

– 'bit'

LZF Filter

• 'complib' == 'lzf'

• 'shuffle' one of [False, None, 'none', True, 'byte']

• 'complevel' one of [False, None, 'none']

GZip Filter

• 'complib' == 'gzip'

• 'shuffle' one of [False, None, 'none', True, 'byte']

• complevel valid values: [0, 9] where 0 is “no compression” and 9 is “most compression”

4.11. Backend selection 153

Hangar, Release 0.5.2

Record Format

Fields Recorded for Each Array

• Format Code

• File UID

• xxhash64_hexdigest (ie. checksum)

• Dataset Number (0:COLLECTION_COUNT dataset selection)

• Dataset Index (0:COLLECTION_SIZE dataset subarray selection)

• Subarray Shape

Examples

1) Adding the first piece of data to a file:

• Array shape (Subarray Shape): (10, 10)

• File UID: “rlUK3C”

• xxhash64_hexdigest: 8067007c0f05c359

• Dataset Number: 16

• Collection Index: 105

Record Data => "00:rlUK3C:8067007c0f05c359:16:105:10 10"

1) Adding to a piece of data to a the middle of a file:

• Array shape (Subarray Shape): (20, 2, 3)

• File UID: “rlUK3C”

• xxhash64_hexdigest: b89f873d3d153a9c

• Dataset Number: “3”

• Collection Index: 199

Record Data => "00:rlUK3C:b89f873d3d153a9c:8:199:20 2 3"

Technical Notes

• Files are read only after initial creation/writes. Only a write-enabled checkout can open a HDF5 file in "w"
or "a" mode, and writer checkouts create new files on every checkout, and make no attempt to fill in unset
locations in previous files. This is not an issue as no disk space is used until data is written to the initially
created “zero-initialized” collection datasets

• On write: Single Writer Multiple Reader (SWMR) mode is set to ensure that improper closing (not calling .
close()) method does not corrupt any data which had been previously flushed to the file.

• On read: SWMR is set to allow multiple readers (in different threads / processes) to read from the same file. File
handle serialization is handled via custom python pickle serialization/reduction logic which is implemented
by the high level pickle reduction __set_state__(), __get_state__() class methods.

154 Chapter 4. Development

Hangar, Release 0.5.2

• An optimization is performed in order to increase the read / write performance of variable shaped datasets. Due
to the way that we initialize an entire HDF5 file with all datasets pre-created (to the size of the max subarray
shape), we need to ensure that storing smaller sized arrays (in a variable sized Hangar Column) would be
effective. Because we use chunked storage, certain dimensions which are incomplete could have potentially
required writes to chunks which do are primarily empty (worst case “C” index ordering), increasing read / write
speeds significantly.

To overcome this, we create HDF5 datasets which have COLLECTION_SIZE first dimension size, and only
ONE second dimension of size schema_shape.size() (ie. product of all dimensions). For example an
array schema with shape (10, 10, 3) would be stored in a HDF5 dataset of shape (COLLECTION_SIZE, 300).
Chunk sizes are chosen to align on the first dimension with a second dimension of size which fits the total data
into L2 CPU Cache (< 256 KB). On write, we use the np.ravel function to construct a “view” (not copy)
of the array as a 1D array, and then on read we reshape the array to the recorded size (a copyless “view-only”
operation). This is part of the reason that we only accept C ordered arrays as input to Hangar.

Fixed Shape Optimized Local HDF5

Local HDF5 Backend Implementation, Identifier: HDF5_01

Backend Identifiers

• Backend: 0

• Version: 1

• Format Code: 01

• Canonical Name: HDF5_01

Storage Method

• This module is meant to handle larger datasets which are of fixed size. IO and significant compression optimiza-
tion is achieved by storing arrays at their appropriate top level index in the same shape they naturally assume
and chunking over the entire subarray domain making up a sample (rather than having to subdivide chunks when
the sample could be variably shaped.)

• Data is written to specific subarray indexes inside an HDF5 “dataset” in a single HDF5 File.

• In each HDF5 File there are COLLECTION_COUNT “datasets” (named ["0" : "{COLLECTION_COUNT}
"]). These are referred to as "dataset number"

• Each dataset is a zero-initialized array of:

– dtype: {schema_dtype}; ie np.float32 or np.uint8

– shape: (COLLECTION_SIZE, *{schema_shape}); ie (500, 10, 10) or (500, 512,
512, 320). The first index in the dataset is referred to as a collection index.

• Compression Filters, Chunking Configuration/Options are applied globally for all datasets in a file at dataset
creation time.

• On read and write of all samples the xxhash64_hexdigest is calculated for the raw array bytes. This is to ensure
that all data in == data out of the hdf5 files. That way even if a file is manually edited (bypassing fletcher32
filter check) we have a quick way to tell that things are not as they should be.

4.11. Backend selection 155

Hangar, Release 0.5.2

Compression Options

Accepts dictionary containing keys

• backend == "01"

• complib

• complevel

• shuffle

Blosc-HDF5

• complib valid values:

– 'blosc:blosclz',

– 'blosc:lz4',

– 'blosc:lz4hc',

– 'blosc:zlib',

– 'blosc:zstd'

• complevel valid values: [0, 9] where 0 is “no compression” and 9 is “most compression”

• shuffle valid values:

– None

– 'none'

– 'byte'

– 'bit'

LZF Filter

• 'complib' == 'lzf'

• 'shuffle' one of [False, None, 'none', True, 'byte']

• 'complevel' one of [False, None, 'none']

GZip Filter

• 'complib' == 'gzip'

• 'shuffle' one of [False, None, 'none', True, 'byte']

• complevel valid values: [0, 9] where 0 is “no compression” and 9 is “most compression”

Record Format

Fields Recorded for Each Array

• Format Code

• File UID

• xxhash64_hexdigest (ie. checksum)

• Dataset Number (0:COLLECTION_COUNT dataset selection)

• Dataset Index (0:COLLECTION_SIZE dataset subarray selection)

156 Chapter 4. Development

Hangar, Release 0.5.2

• Subarray Shape

Examples

1) Adding the first piece of data to a file:

• Array shape (Subarray Shape): (10, 10)

• File UID: “rlUK3C”

• xxhash64_hexdigest: 8067007c0f05c359

• Dataset Number: 16

• Collection Index: 105

Record Data => "01:rlUK3C:8067007c0f05c359:16:105:10 10"

1) Adding to a piece of data to a the middle of a file:

• Array shape (Subarray Shape): (20, 2, 3)

• File UID: “rlUK3C”

• xxhash64_hexdigest: b89f873d3d153a9c

• Dataset Number: “3”

• Collection Index: 199

Record Data => "01:rlUK3C:b89f873d3d153a9c:8:199:20 2 3"

Technical Notes

• The majority of methods not directly related to “chunking” and the “raw data chunk cache” are either identical
to HDF5_00, or only slightly modified.

• Files are read only after initial creation/writes. Only a write-enabled checkout can open a HDF5 file in "w"
or "a" mode, and writer checkouts create new files on every checkout, and make no attempt to fill in unset
locations in previous files. This is not an issue as no disk space is used until data is written to the initially
created “zero-initialized” collection datasets

• On write: Single Writer Multiple Reader (SWMR) mode is set to ensure that improper closing (not calling .
close()) method does not corrupt any data which had been previously flushed to the file.

• On read: SWMR is set to allow multiple readers (in different threads / processes) to read from the same file. File
handle serialization is handled via custom python pickle serialization/reduction logic which is implemented
by the high level pickle reduction __set_state__(), __get_state__() class methods.

• An optimization is performed in order to increase the read / write performance of fixed size datasets. Due to the
way that we initialize an entire HDF5 file with all datasets pre-created (to the size of the fixed subarray shape),
and the fact we absolutely know the size / shape / access-pattern of the arrays, inefficient IO due to wasted chunk
processing is not a concern. It is far more efficient for us to completely blow off the metadata chunk cache, and
chunk each subarray as a single large item item.

This method of processing tends to have a number of significant effects as compared to chunked storage meth-
ods:

1. Compression rations improve (by a non-trivial factor). This is simply due to the fact that a larger amount
of raw data is being passed into the compressor at a time. While the exact improvement seen is highly
dependent on both the data size and compressor used, there should be no case where compressing the

4.11. Backend selection 157

Hangar, Release 0.5.2

full tensor uses more disk space then chunking the tensor, compressing each chunk individually, and then
saving each chunk to disk.

2. Read performance improves (so long as a suitable compressor / option set was chosen). Instead of issuing
(potentially) many read requests - one for each chunk - to the storage hardware, signifiantly few IOPS are
used to retrieve the entire set of compressed raw data from disk. Fewer IOPS means much less time waiting
on the hard disk. Moreso, only a single decompression step is needed to reconstruct the numeric array,
completly decoupling performance from HDF5’s ability to parallelize internal filter pipeline operations.

Additionally, since the entire requested chunk is retrieved in a single decompression pipeline run, there is
no need for the HDF5 core to initialize an intermediate buffer which holds data chunks as each decompres-
sion operation completes. Futher, by preinitializing an empty numpy.ndarray container and using the
low level HDF5 read_direct method, the decompressed data buffer is passes directly into the returned
ndarray.__array_interface__.data field with no intermediate copy or processing steps.

3. Shuffle filters are favored.. With much more data to work with in a single compression operation, the
use of “byte shuffle” filters in the compressor spec has been seen to both markedly decrease read time and
increase compression ratios. Shuffling can significantly reduce disk space required to store some piece of
data on disk, further reducing the time spent waiting on hard disk IO while incuring a negligible cost to
decompression speed.

Taking all of these effects into account, there can be up to an order of magnitude increase in read performance
as compared to the subarray chunking strategy employed by the HDF5_00 backend.

• Like all other backends at the time of writing, only ‘C’ ordered arrays are accepted by this method.

Local NP Memmap Backend

Local Numpy memmap Backend Implementation, Identifier: NUMPY_10

Backend Identifiers

• Backend: 1

• Version: 0

• Format Code: 10

• Canonical Name: NUMPY_10

Storage Method

• Data is written to specific subarray indexes inside a numpy memmapped array on disk.

• Each file is a zero-initialized array of

– dtype: {schema_dtype}; ie np.float32 or np.uint8

– shape: (COLLECTION_SIZE, *{schema_shape}); ie (500, 10) or (500, 4, 3). The
first index in the array is referred to as a “collection index”.

Compression Options

Does not accept any compression options. No compression is applied.

158 Chapter 4. Development

Hangar, Release 0.5.2

Record Format

Fields Recorded for Each Array

• Format Code

• File UID

• xxhash64_hexdigest

• Collection Index (0:COLLECTION_SIZE subarray selection)

• Subarray Shape

Examples

1) Adding the first piece of data to a file:

• Array shape (Subarray Shape): (10, 10)

• File UID: “K3ktxv”

• xxhash64_hexdigest: 94701dd9f32626e2

• Collection Index: 488

Record Data => "10:K3ktxv:94701dd9f32626e2:488:10 10"

2) Adding to a piece of data to a the middle of a file:

• Array shape (Subarray Shape): (20, 2, 3)

• File UID: “Mk23nl”

• xxhash64_hexdigest: 1363344b6c051b29

• Collection Index: 199

Record Data => "10:Mk23nl:1363344b6c051b29:199:20 2 3"

Technical Notes

• A typical numpy memmap file persisted to disk does not retain information about its datatype or shape, and as
such must be provided when re-opened after close. In order to persist a memmap in .npy format, we use the a
special function open_memmap imported from np.lib.format which can open a memmap file and persist
necessary header info to disk in .npy format.

• On each write, an xxhash64_hexdigest checksum is calculated. This is not for use as the primary hash
algorithm, but rather stored in the local record format itself to serve as a quick way to verify no disk corruption
occurred. This is required since numpy has no built in data integrity validation methods when reading from disk.

Variable Shape LMDB String Data Store

Local LMDB Backend Implementation, Identifier: LMDB_30

4.11. Backend selection 159

Hangar, Release 0.5.2

Backend Identifiers

• Backend: 3

• Version: 0

• Format Code: 30

• Canonical Name: LMDB_30

Storage Method

• This module is meant to handle string typed data which is of any size. IO is performed via the LMDB storage
system.

• This module does not compress values upon writing, the full (uncompressed) value of the text is written to the
DB for each key.

• For each LMDB file generated, data is indexed by keys which are generated in lexicographically sorted order
of key length 4. Keys consist of 4 characters chosen from an alphabet consisting of ASCII digits, lowercase
letters, and upercase letters. Within a single write instance (when an LMDB file is created and written to),
lexicographically sorted permutations of the chosen characters are used as key indexes.

This means that for each LMDB file written in a repo, the sequence of generated index keys will be identical,
even though two databases with the same key will store different values. As such, the File UID is crucial in
order to identify a unique db/index key combo to access a particular value by.

• There is no limit to the size which each record can occupy. Data is stored “as-is” and is uncompressed. Reading
the data back will return the exact data stored (regardless of how large the data record is).

• On read and write of all samples the xxhash64_hexdigest is calculated for the raw data bytes. This is to ensure
that all data in == data out of the lmdb files. That way even if a file is manually edited we have a quick way
to tell that things are not as they should be. (full data hash digests may not be calculated every time a read is
performed).

Compression Options

None

Record Format

Fields Recorded for Each Array

• Format Code

• File UID

• Row Index

Examples

1) Adding the first piece of data to a file:

• File UID: “rlUK3C”

• Row Index: “0123”

160 Chapter 4. Development

Hangar, Release 0.5.2

• xxhash64_hexdigest: 8067007c0f05c359

Record Data => "30:rlUK3C:0123:8067007c0f05c359"

2) Adding a second piece of data:

• File UID: “rlUK3C”

• Row Index: “0124”

• xxhash64_hexdigest: b89f873d3d153a9c

Record Data => "30:rlUK3C:0124:b89f873d3d153a9c"

3) Adding a the 500th piece of data:

• File UID: “rlUK3C”

• Row Index: “01AU”

• xxhash64_hexdigest: cf3fc53cad153a5a

Record Data => "30:rlUK3C:01AU:cf3fc53cad153a5a"

Remote Server Unknown Backend

Remote server location unknown backend, Identifier: REMOTE_50

Backend Identifiers

• Backend: 5

• Version: 0

• Format Code: 50

• Canonical Name: REMOTE_50

Storage Method

• This backend merely acts to record that there is some data sample with some hash and schema_shape
present in the repository. It does not store the actual data on the local disk, but indicates that if it should be
retrieved, you need to ask the remote hangar server for it. Once present on the local disk, the backend locating
info will be updated with one of the local data backend specifications.

Record Format

Fields Recorded for Each Array

• Format Code

• Schema Hash

Separators used

• SEP_KEY: ":"

4.11. Backend selection 161

Hangar, Release 0.5.2

Examples

1) Adding the first piece of data to a file:

• Schema Hash: “ae43A21a”

Record Data => '50:ae43A21a'

1) Adding to a piece of data to a the middle of a file:

• Schema Hash: “ae43A21a”

Record Data => '50:ae43A21a'

Technical Notes

• The schema_hash field is required in order to allow effective placement of actual retrieved data into suitable
sized collections on a fetch-data() operation

4.12 Contributing to Hangar

4.12.1 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

All community members should read and abide by our Contributor Code of Conduct.

Bug reports

When reporting a bug please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Documentation improvements

Hangar could always use more documentation, whether as part of the official Hangar docs, in docstrings, or even on
the web in blog posts, articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/tensorwerk/hangar-py/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that code contributions are welcome :)

162 Chapter 4. Development

https://github.com/tensorwerk/hangar-py/issues
https://github.com/tensorwerk/hangar-py/issues

Hangar, Release 0.5.2

Development

To set up hangar-py for local development:

1. Fork hangar-py (look for the “Fork” button).

2. Clone your fork locally:

git clone git@github.com:your_name_here/hangar-py.git

3. Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

tox

5. Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

1. Include passing tests (run tox)1.

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG.rst about the changes.

4. Add yourself to AUTHORS.rst.

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

1 If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.

It will be slower though . . .

4.12. Contributing to Hangar 163

https://github.com/tensorwerk/hangar-py
http://tox.readthedocs.io/en/latest/install.html
https://travis-ci.org/tensorwerk/hangar-py/pull_requests

Hangar, Release 0.5.2

4.12.2 Contributor Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
hangar.info@tensorwerk.com. All complaints will be reviewed and investigated and will result in a response that is
deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with
regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

164 Chapter 4. Development

mailto:hangar.info@tensorwerk.com

Hangar, Release 0.5.2

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant homepage, version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq

4.12.3 Hangar Performance Benchmarking Suite

A set of benchmarking tools are included in order to track the performance of common hangar operations over the
course of time. The benchmark suite is run via the phenomenal Airspeed Velocity (ASV) project.

Benchmarks can be viewed at the following web link, or by examining the raw data files in the separate benchmark
results repo.

• Benchmark Web View

• Benchmark Results Repo

Purpose

In addition to providing historical metrics and insight into application performance over many releases of Hangar, the
benchmark suite is used as a canary to identify potentially problematic pull requests. All PRs to the Hangar repository
are automatically benchmarked by our CI system to compare the performance of proposed changes to that of the
current master branch.

The results of this canary are explicitly NOT to be used as the “be-all-end-all” decider of whether a PR is suitable to
be merged or not.

Instead, it is meant to serve the following purposes:

1. Help contributors understand the consequences of some set of changes on the greater system early in the
PR process. Simple code is best; if there’s no obvious performance degradation or significant improvement to
be had, then there’s no need (or really rationale) for using more complex algorithms or data structures. It’s more
work for the author, project maintainers, and long term health of the codebase.

2. Not everything can be caught by the capabilities of a traditional test suite. Hangar is fairly flat/modular
in structure, but there are certain hotspots in the codebase where a simple change could drastically degrade
performance. It’s not always obvious where these hotspots are, and even a change which is functionally identical
(introducing no issues/bugs to the end user) can unknowingly cross a line and introduce some large regression
completely unnoticed to the authors/reviewers.

3. Sometimes tradeoffs need to be made when introducing something new to a system. Whether this be due to
fundamental CS problems (space vs. time) or simple matters of practicality vs. purity, it’s always easier to act in
environments where relevant information is available before a decision is made. Identifying and quantifying
tradeoffs/regressions/benefits during development is the only way we can make informed decisions. The
only times to be OK with some regression is when knowing about it in advance, it might be the right choice at
the time, but if we don’t measure we will never know.

4.12. Contributing to Hangar 165

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/faq
https://asv.readthedocs.io/
https://tensorwerk.com/hangar-benchmarks
https://github.com/tensorwerk/hangar-benchmarks

Hangar, Release 0.5.2

166 Chapter 4. Development

Hangar, Release 0.5.2

Important Notes on Using/Modifying the Benchmark Suite

1. Do not commit any of the benchmark results, environment files, or generated visualizations to the reposi-
tory. We store benchmark results in a separate repository so to not clutter the main repo with un-necessary data.
The default directories these are generated in are excluded in our .gitignore config, so baring some unusual
git usage patterns, this should not be a day-to-day concern.

2. Proposed changes to the benchmark suite should be made to the code in this repository first. The benchmark
results repository mirror will be synchronized upon approval/merge of changes to the main Hangar repo.

Introduction to Running Benchmarks

As ASV sets up and manages it’s own virtual environments and source installations, benchmark execution is not run
via tox. While a brief tutorial is included below, please refer to the ASV Docs for detailed information on how to
both run, understand, and write ASV benchmarks.

First Time Setup

1. Ensure that virtualenv, setuptools, pip are updated to the latest version.

2. Install ASV $ pip install asv.

3. Open a terminal and navigate to the hangar-py/asv-bench directory.

4. Run $ asv machine to record details of your machine, it is OK to just use the defaults.

Running Benchmarks

Refer to the using ASV page for a full tutorial, paying close attention to the asv run command. Generally asv run
requires a range of commits to benchmark across (specified via either branch name, tags, or commit digests).

To benchmark every commit between the current master HEAD and v0.3.0, you would execute:

$ asv run v0.2.0..master

However, this may result in a larger workload then you are willing to wait around for. To limit the number of commits,
you can specify the --steps=N option to only benchmark N commits at most between HEAD and v0.3.0.

The most useful tool during development is the asv continuous command. using the following syntax will benchmark
any changes in a local development branch against the base master commit:

$ asv continuous origin/master HEAD

Running asv compare will generate a quick summary of any performance differences:

$ asv compare origin/master HEAD

Visualizing Results

After generating benchmark data for a number of commits through history, the results can be reviewed in (an automat-
ically generated) local web interface by running the following commands:

$ asv publish
$ asv preview

4.12. Contributing to Hangar 167

https://github.com/tensorwerk/hangar-benchmarks
https://asv.readthedocs.io/
https://asv.readthedocs.io/en/stable/using.html#running-benchmarks
https://asv.readthedocs.io/en/stable/commands.html#asv-run
https://asv.readthedocs.io/en/stable/commands.html#asv-continuous
https://asv.readthedocs.io/en/stable/commands.html#asv-compare

Hangar, Release 0.5.2

Navigating to http://127.0.0.1:8080/ will pull up an interactive webpage where the full set of benchmark
graphs/explorations utilities can be viewed. This will look something like the image below.

4.13 Authors

• Richard Izzo - rick@tensorwerk.com

• Luca Antiga - luca@tensorwerk.com

• Sherin Thomas - sherin@tensorwerk.com

• Alessia Marcolini - alessia@tensorwerk.com

4.14 Change Log

4.14.1 ‘0.5.2‘_ (2020-05-08)

New Features

• New column data type supporting arbitrary bytes data. (#198) @rlizzo

Improvements

• str typed columns can now accept data containing any unicode code-point. In prior releases data containing
any non-ascii character could not be written to this column type. (#198) @rlizzo

Bug Fixes

• Fixed issue where str and (newly added) bytes column data could not be fetched / pushed between a local
client repository and remote server. (#198) @rlizzo

4.14.2 ‘0.5.1‘_ (2020-04-05)

BugFixes

• Fixed issue where importing make_torch_dataloader or make_tf_dataloader under python 3.6
Would raise a NameError irrigardless of if the package is installed. (#196) @rlizzo

4.14.3 v0.5.0 (2020-04-4)

Improvements

• Python 3.8 is now fully supported. (#193) @rlizzo

• Major backend overhaul which defines column layouts and data types in the same interchangable / extensable
manner as storage backends. This will allow rapid development of new layouts and data type support as new
use cases are discovered by the community. (#184) @rlizzo

• Column and backend classes are now fully serializable (pickleable) for read-only checkouts. (#180) @rlizzo

168 Chapter 4. Development

mailto:rick@tensorwerk.com
mailto:luca@tensorwerk.com
mailto:sherin@tensorwerk.com
mailto:alessia@tensorwerk.com
https://github.com/tensorwerk/hangar-py/pull/198
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/198
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/198
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/196
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/193
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/184
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/180
https://github.com/rlizzo

Hangar, Release 0.5.2

4.14. Change Log 169

Hangar, Release 0.5.2

• Modularized internal structure of API classes to easily allow new columnn layouts / data types to be added in
the future. (#180) @rlizzo

• Improved type / value checking of manual specification for column backend and backend_options.
(#180) @rlizzo

• Standardized column data access API to follow python standard library dict methods API. (#180) @rlizzo

• Memory usage of arrayset checkouts has been reduced by ~70% by using C-structs for allocating sample record
locating info. (#179) @rlizzo

• Read times from the HDF5_00 and HDF5_01 backend have been reduced by 33-38% (or more for arraysets
with many samples) by eliminating redundant computation of chunked storage B-Tree. (#179) @rlizzo

• Commit times and checkout times have been reduced by 11-18% by optimizing record parsing and memory
allocation. (#179) @rlizzo

New Features

• Added str type column with same behavior as ndarray column (supporting both single-level and nested
layouts) added to replace functionality of removed metadata container. (#184) @rlizzo

• New backend based on LMDB has been added (specifier of lmdb_30). (#184) @rlizzo

• Added .diff() method to Repository class to enable diffing changes between any pair of commits /
branches without needing to open the diff base in a checkout. (#183) @rlizzo

• New CLI command hangar diff which reports a summary view of changes made between any pair of
commits / branches. (#183) @rlizzo

• Added .log() method to Checkout objects so graphical commit graph or machine readable commit details
/ DAG can be queried when operating on a particular commit. (#183) @rlizzo

• “string” type columns now supported alongside “ndarray” column type. (#180) @rlizzo

• New “column” API, which replaces “arrayset” name. (#180) @rlizzo

• Arraysets can now contain “nested subsamples” under a common sample key. (#179) @rlizzo

• New API to add and remove samples from and arrayset. (#179) @rlizzo

• Added repo.size_nbytes and repo.size_human to report disk usage of a repository on disk. (#174)
@rlizzo

• Added method to traverse the entire repository history and cryptographically verify integrity. (#173) @rlizzo

Changes

• Argument syntax of __getitem__() and get() methods of ReaderCheckout and WriterCheckout
classes. The new format supports handeling arbitrary arguments specific to retrieval of data from any column
type. (#183) @rlizzo

Removed

• metadata container for str typed data has been completly removed. It is replaced by a highly extensible and
much more user-friendly str typed column. (#184) @rlizzo

• __setitem__() method in WriterCheckout objects. Writing data to columns via a checkout object is
no longer supported. (#183) @rlizzo

170 Chapter 4. Development

https://github.com/tensorwerk/hangar-py/pull/180
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/180
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/180
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/179
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/179
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/179
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/184
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/184
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/183
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/183
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/183
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/180
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/180
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/179
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/179
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/174
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/173
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/183
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/184
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/183
https://github.com/rlizzo

Hangar, Release 0.5.2

Bug Fixes

• Backend data stores no longer use file symlinks, improving compatibility with some types file systems. (#171)
@rlizzo

• All arrayset types (“flat” and “nested subsamples”) and backend readers can now be pickled – for parallel
processing – in a read-only checkout. (#179) @rlizzo

Breaking changes

• New backend record serialization format is incompatible with repositories written in version 0.4 or earlier.

• New arrayset API is incompatible with Hangar API in version 0.4 or earlier.

4.14.4 v0.4.0 (2019-11-21)

New Features

• Added ability to delete branch names/pointers from a local repository via both API and CLI. (#128) @rlizzo

• Added local keyword arg to arrayset key/value iterators to return only locally available samples (#131) @rl-
izzo

• Ability to change the backend storage format and options applied to an arrayset after initialization. (#133)
@rlizzo

• Added blosc compression to HDF5 backend by default on PyPi installations. (#146) @rlizzo

• Added Benchmarking Suite to Test for Performance Regressions in PRs. (#155) @rlizzo

• Added new backend optimized to increase speeds for fixed size arrayset access. (#160) @rlizzo

Improvements

• Removed msgpack and pyyaml dependencies. Cleaned up and improved remote client/server code. (#130)
@rlizzo

• Multiprocess Torch DataLoaders allowed on Linux and MacOS. (#144) @rlizzo

• Added CLI options commit, checkout, arrayset create, & arrayset remove. (#150) @rlizzo

• Plugin system revamp. (#134) @hhsecond

• Documentation Improvements and Typo-Fixes. (#156) @alessiamarcolini

• Removed implicit removal of arrayset schema from checkout if every sample was removed from arrayset. This
could potentially result in dangling accessors which may or may not self-destruct (as expected) in certain edge-
cases. (#159) @rlizzo

• Added type codes to hash digests so that calculation function can be updated in the future without breaking
repos written in previous Hangar versions. (#165) @rlizzo

Bug Fixes

• Programatic access to repository log contents now returns branch heads alongside other log info. (#125) @rlizzo

• Fixed minor bug in types of values allowed for Arrayset names vs Sample names. (#151) @rlizzo

4.14. Change Log 171

https://github.com/tensorwerk/hangar-py/pull/171
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/179
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/128
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/131
https://github.com/rlizzo
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/133
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/146
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/155
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/160
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/130
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/144
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/150
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/134
https://github.com/hhsecond
https://github.com/tensorwerk/hangar-py/pull/156
https://github.com/alessiamarcolini
https://github.com/tensorwerk/hangar-py/pull/159
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/165
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/125
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/151
https://github.com/rlizzo

Hangar, Release 0.5.2

• Fixed issue where using checkout object to access a sample in multiple arraysets would try to create a
namedtuple instance with invalid field names. Now incompatible field names are automatically renamed
with their positional index. (#161) @rlizzo

• Explicitly raise error if commit argument is set while checking out a repository with write=True. (#166)
@rlizzo

Breaking changes

• New commit reference serialization format is incompatible with repositories written in version 0.3.0 or earlier.

4.14.5 v0.3.0 (2019-09-10)

New Features

• API addition allowing reading and writing arrayset data from a checkout object directly. (#115) @rlizzo

• Data importer, exporters, and viewers via CLI for common file formats. Includes plugin system for easy exten-
sibility in the future. (#103) (@rlizzo, @hhsecond)

Improvements

• Added tutorial on working with remote data. (#113) @rlizzo

• Added Tutorial on Tensorflow and PyTorch Dataloaders. (#117) @hhsecond

• Large performance improvement to diff/merge algorithm (~30x previous). (#112) @rlizzo

• New commit hash algorithm which is much more reproducible in the long term. (#120) @rlizzo

• HDF5 backend updated to increase speed of reading/writing variable sized dataset compressed chunks (#120)
@rlizzo

Bug Fixes

• Fixed ML Dataloaders errors for a number of edge cases surrounding partial-remote data and non-common keys.
(#110) (@hhsecond, @rlizzo)

Breaking changes

• New commit hash algorithm is incompatible with repositories written in version 0.2.0 or earlier

4.14.6 v0.2.0 (2019-08-09)

New Features

• Numpy memory-mapped array file backend added. (#70) @rlizzo

• Remote server data backend added. (#70) @rlizzo

• Selection heuristics to determine appropriate backend from arrayset schema. (#70) @rlizzo

• Partial remote clones and fetch operations now fully supported. (#85) @rlizzo

172 Chapter 4. Development

https://github.com/tensorwerk/hangar-py/pull/161
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/166
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/115
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/103
https://github.com/rlizzo
https://github.com/hhsecond
https://github.com/tensorwerk/hangar-py/pull/113
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/117
https://github.com/hhsecond
https://github.com/tensorwerk/hangar-py/pull/112
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/120
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/120
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/110
https://github.com/hhsecond
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/70
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/70
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/70
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/85
https://github.com/rlizzo

Hangar, Release 0.5.2

• CLI has been placed under test coverage, added interface usage to docs. (#85) @rlizzo

• TensorFlow and PyTorch Machine Learning Dataloader Methods (Experimental Release). (#91) lead: @hhsec-
ond, co-author: @rlizzo, reviewed by: @elistevens

Improvements

• Record format versioning and standardization so to not break backwards compatibility in the future. (#70)
@rlizzo

• Backend addition and update developer protocols and documentation. (#70) @rlizzo

• Read-only checkout arrayset sample get methods now are multithread and multiprocess safe. (#84) @rlizzo

• Read-only checkout metadata sample get methods are thread safe if used within a context manager. (#101)
@rlizzo

• Samples can be assigned integer names in addition to string names. (#89) @rlizzo

• Forgetting to close a write-enabled checkout before terminating the python process will close the checkout
automatically for many situations. (#101) @rlizzo

• Repository software version compatability methods added to ensure upgrade paths in the future. (#101) @rlizzo

• Many tests added (including support for Mac OSX on Travis-CI). lead: @rlizzo, co-author: @hhsecond

Bug Fixes

• Diff results for fast forward merges now returns sensible results. (#77) @rlizzo

• Many type annotations added, and developer documentation improved. @hhsecond & @rlizzo

Breaking changes

• Renamed all references to datasets in the API / world-view to arraysets.

• These are backwards incompatible changes. For all versions > 0.2, repository upgrade utilities will be provided
if breaking changes occur.

4.14.7 v0.1.1 (2019-05-24)

Bug Fixes

• Fixed typo in README which was uploaded to PyPi

4.14.8 v0.1.0 (2019-05-24)

New Features

• Remote client-server config negotiation and administrator permissions. (#10) @rlizzo

• Allow single python process to access multiple repositories simultaneously. (#20) @rlizzo

• Fast-Forward and 3-Way Merge and Diff methods now fully supported and behaving as expected. (#32) @rlizzo

4.14. Change Log 173

https://github.com/tensorwerk/hangar-py/pull/85
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/91
https://github.com/hhsecond
https://github.com/hhsecond
https://github.com/rlizzo
https://github.com/elistevens
https://github.com/tensorwerk/hangar-py/pull/70
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/70
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/84
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/101
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/89
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/101
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/101
https://github.com/rlizzo
https://github.com/rlizzo
https://github.com/hhsecond
https://github.com/tensorwerk/hangar-py/pull/77
https://github.com/rlizzo
https://github.com/hhsecond
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/10
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/20
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/32
https://github.com/rlizzo

Hangar, Release 0.5.2

Improvements

• Initial test-case specification. (#14) @hhsecond

• Checkout test-case work. (#25) @hhsecond

• Metadata test-case work. (#27) @hhsecond

• Any potential failure cases raise exceptions instead of silently returning. (#16) @rlizzo

• Many usability improvements in a variety of commits.

Bug Fixes

• Ensure references to checkout arrayset or metadata objects cannot operate after the checkout is closed. (#41)
@rlizzo

• Sensible exception classes and error messages raised on a variety of situations (Many commits). @hhsecond &
@rlizzo

• Many minor issues addressed.

API Additions

• Refer to API documentation (#23)

Breaking changes

• All repositories written with previous versions of Hangar are liable to break when using this version. Please
upgrade versions immediately.

4.14.9 v0.0.0 (2019-04-15)

• First Public Release of Hangar!

174 Chapter 4. Development

https://github.com/tensorwerk/hangar-py/pull/14
https://github.com/hhsecond
https://github.com/tensorwerk/hangar-py/pull/25
https://github.com/hhsecond
https://github.com/tensorwerk/hangar-py/pull/27
https://github.com/hhsecond
https://github.com/tensorwerk/hangar-py/pull/16
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/41
https://github.com/rlizzo
https://github.com/hhsecond
https://github.com/rlizzo
https://github.com/tensorwerk/hangar-py/pull/23

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

175

Hangar, Release 0.5.2

176 Chapter 5. Indices and tables

Python Module Index

h
hangar.backends.__init__, 151
hangar.backends.hdf5_00, 152
hangar.backends.hdf5_01, 155
hangar.backends.lmdb_30, 159
hangar.backends.numpy_10, 158
hangar.backends.remote_50, 161
hangar.external._external, 144
hangar.external.base_plugin, 146
hangar.repository, 20

177

Hangar, Release 0.5.2

178 Python Module Index

Index

Symbols
-branch <branch>

hangar-import command line option,
140

-contains-subsamples
hangar-column-create command line

option, 137
-email <email>

hangar-clone command line option,
136

hangar-init command line option, 141
-force-release

hangar-writer-lock command line
option, 144

-ip <ip>
hangar-server command line option,

143
-name <name>

hangar-clone command line option,
136

hangar-init command line option, 141
-overwrite

hangar-clone command line option,
136

hangar-import command line option,
140

hangar-init command line option, 141
hangar-server command line option,

143
-plugin <plugin>

hangar-export command line option,
139

hangar-import command line option,
140

hangar-view command line option, 144
-port <port>

hangar-server command line option,
143

-timeout <timeout>

hangar-server command line option,
143

-variable-shape
hangar-column-create command line

option, 137
-version

hangar command line option, 135
-a, -all-history

hangar-fetch-data command line
option, 140

-d, -column <column>
hangar-fetch-data command line

option, 140
-f, -force

hangar-branch-delete command line
option, 135

-f, -format <format_>
hangar-export command line option,

139
hangar-view command line option, 144

-m, -message <message>
hangar-commit command line option,

138
-n, -nbytes <nbytes>

hangar-fetch-data command line
option, 140

-o, -out <outdir>
hangar-export command line option,

139
-s, -sample <sample>

hangar-export command line option,
139

__contains__() (Columns method), 38
__contains__() (FlatSampleWriter method), 39, 54
__contains__() (NestedSampleReader method), 57
__contains__() (NestedSampleWriter method), 43
__contains__() (ReaderCheckout method), 50
__contains__() (WriterCheckout method), 31
__delitem__() (Columns method), 38
__delitem__() (FlatSampleWriter method), 39, 54

179

Hangar, Release 0.5.2

__delitem__() (FlatSubsampleWriter method), 45
__delitem__() (NestedSampleWriter method), 43
__getitem__() (Columns method), 38
__getitem__() (FlatSampleWriter method), 40, 54
__getitem__() (FlatSubsampleReader method), 59
__getitem__() (FlatSubsampleWriter method), 46
__getitem__() (NestedSampleReader method), 57
__getitem__() (NestedSampleWriter method), 43
__getitem__() (ReaderCheckout method), 50
__getitem__() (WriterCheckout method), 31
__iter__() (FlatSampleWriter method), 40, 54
__iter__() (NestedSampleReader method), 57
__iter__() (NestedSampleWriter method), 43
__iter__() (ReaderCheckout method), 51
__iter__() (WriterCheckout method), 32
__len__() (Columns method), 38
__len__() (FlatSampleWriter method), 40, 54
__len__() (NestedSampleReader method), 57
__len__() (NestedSampleWriter method), 43
__len__() (ReaderCheckout method), 51
__len__() (WriterCheckout method), 32
__setitem__() (FlatSampleWriter method), 40, 54
__setitem__() (FlatSubsampleWriter method), 46
__setitem__() (NestedSampleWriter method), 43

A
add() (Remotes method), 28
add_bytes_column() (WriterCheckout method), 32
add_ndarray_column() (WriterCheckout method),

33
add_str_column() (WriterCheckout method), 34
ADDRESS

hangar-remote-add command line
option, 142

append() (FlatSampleWriter method), 40, 55
append() (FlatSubsampleWriter method), 46

B
backend (FlatSampleWriter attribute), 40, 55
backend (NestedSampleReader attribute), 57
backend (NestedSampleWriter attribute), 43
backend_options (FlatSampleWriter attribute), 40,

55
backend_options (NestedSampleReader attribute),

57
backend_options (NestedSampleWriter attribute),

43
BasePlugin (class in hangar.external.base_plugin),

146
board_show() (BasePlugin method), 146
board_show() (in module hangar.external._external),

145
BRANCH

hangar-fetch command line option,
140

hangar-push command line option, 142
branch() (ReaderUserDiff method), 61
branch() (WriterUserDiff method), 49
branch_name (WriterCheckout attribute), 35
BRANCHNAME

hangar-checkout command line
option, 136

C
change_backend() (FlatSampleWriter method), 40,

55
change_backend() (NestedSampleWriter method),

43
checkout() (Repository method), 21
clone() (Repository method), 21
close() (ReaderCheckout method), 52
close() (WriterCheckout method), 35
COLUMN

hangar-export command line option,
139

hangar-import command line option,
141

hangar-view command line option, 144
column (FlatSampleWriter attribute), 41, 55
column (FlatSubsampleReader attribute), 59
column (FlatSubsampleWriter attribute), 46
column (NestedSampleReader attribute), 58
column (NestedSampleWriter attribute), 44
column_layout (FlatSampleWriter attribute), 41, 55
column_layout (NestedSampleReader attribute), 58
column_layout (NestedSampleWriter attribute), 44
column_type (FlatSampleWriter attribute), 41, 55
column_type (NestedSampleReader attribute), 58
column_type (NestedSampleWriter attribute), 44
Columns (class in hangar.columns.column), 38
columns (ReaderCheckout attribute), 52
columns (WriterCheckout attribute), 35
commit() (ReaderUserDiff method), 61
commit() (WriterCheckout method), 35
commit() (WriterUserDiff method), 49
commit_hash (ReaderCheckout attribute), 52
commit_hash (WriterCheckout attribute), 36
contains_remote_references (Columns at-

tribute), 38
contains_remote_references (FlatSam-

pleWriter attribute), 41, 55
contains_remote_references (FlatSubsam-

pleReader attribute), 59
contains_remote_references (FlatSubsam-

pleWriter attribute), 46
contains_remote_references (NestedSam-

pleReader attribute), 58

180 Index

Hangar, Release 0.5.2

contains_remote_references (NestedSam-
pleWriter attribute), 44

contains_subsamples (FlatSampleWriter at-
tribute), 41, 56

contains_subsamples (NestedSampleReader at-
tribute), 58

contains_subsamples (NestedSampleWriter
attribute), 44

create_branch() (Repository method), 22

D
data (FlatSubsampleReader attribute), 60
data (FlatSubsampleWriter attribute), 47
delete() (Columns method), 38
DEV

hangar-diff command line option, 138
diff (ReaderCheckout attribute), 52
diff (WriterCheckout attribute), 36
diff() (Repository method), 23
DTYPE

hangar-column-create command line
option, 137

dtype (FlatSampleWriter attribute), 41, 56
dtype (NestedSampleReader attribute), 58
dtype (NestedSampleWriter attribute), 44

F
fetch() (Remotes method), 28
fetch_data() (Remotes method), 28
FlatSampleWriter (class in

hangar.columns.layout_flat), 39, 54
FlatSubsampleReader (class in

hangar.columns.layout_nested), 59
FlatSubsampleWriter (class in

hangar.columns.layout_nested), 45
force_release_writer_lock() (Repository

method), 23

G
get() (Columns method), 39
get() (FlatSampleWriter method), 41, 56
get() (FlatSubsampleReader method), 60
get() (FlatSubsampleWriter method), 47
get() (NestedSampleReader method), 58
get() (NestedSampleWriter method), 44
get() (ReaderCheckout method), 53
get() (WriterCheckout method), 36

H
hangar command line option

-version, 135
hangar-branch-create command line

option

NAME, 135
STARTPOINT, 135

hangar-branch-delete command line
option

-f, -force, 135
NAME, 135

hangar-checkout command line option
BRANCHNAME, 136

hangar-clone command line option
-email <email>, 136
-name <name>, 136
-overwrite, 136
REMOTE, 136

hangar-column-create command line
option

-contains-subsamples, 137
-variable-shape, 137
DTYPE, 137
NAME, 137
SHAPE, 137

hangar-column-remove command line
option

NAME, 138
hangar-commit command line option

-m, -message <message>, 138
hangar-diff command line option

DEV, 138
MASTER, 138

hangar-export command line option
-plugin <plugin>, 139
-f, -format <format_>, 139
-o, -out <outdir>, 139
-s, -sample <sample>, 139
COLUMN, 139
STARTPOINT, 139

hangar-fetch command line option
BRANCH, 140
REMOTE, 140

hangar-fetch-data command line option
-a, -all-history, 140
-d, -column <column>, 140
-n, -nbytes <nbytes>, 140
REMOTE, 140
STARTPOINT, 140

hangar-import command line option
-branch <branch>, 140
-overwrite, 140
-plugin <plugin>, 140
COLUMN, 141
PATH, 141

hangar-init command line option
-email <email>, 141
-name <name>, 141
-overwrite, 141

Index 181

Hangar, Release 0.5.2

hangar-log command line option
STARTPOINT, 141

hangar-push command line option
BRANCH, 142
REMOTE, 142

hangar-remote-add command line option
ADDRESS, 142
NAME, 142

hangar-remote-remove command line
option

NAME, 142
hangar-server command line option

-ip <ip>, 143
-overwrite, 143
-port <port>, 143
-timeout <timeout>, 143

hangar-summary command line option
STARTPOINT, 143

hangar-view command line option
-plugin <plugin>, 144
-f, -format <format_>, 144
COLUMN, 144
SAMPLE, 144
STARTPOINT, 144

hangar-writer-lock command line option
-force-release, 144

hangar.backends.__init__ (module), 151
hangar.backends.hdf5_00 (module), 152
hangar.backends.hdf5_01 (module), 155
hangar.backends.lmdb_30 (module), 159
hangar.backends.numpy_10 (module), 158
hangar.backends.remote_50 (module), 161
hangar.external._external (module), 144
hangar.external.base_plugin (module), 146
hangar.repository (module), 20

I
init() (Repository method), 23
initialized (Repository attribute), 23
iswriteable (Columns attribute), 39
iswriteable (FlatSampleWriter attribute), 41, 56
iswriteable (FlatSubsampleReader attribute), 60
iswriteable (FlatSubsampleWriter attribute), 47
iswriteable (NestedSampleReader attribute), 58
iswriteable (NestedSampleWriter attribute), 44
items() (Columns method), 39
items() (FlatSampleWriter method), 41, 56
items() (FlatSubsampleReader method), 60
items() (FlatSubsampleWriter method), 47
items() (NestedSampleReader method), 58
items() (NestedSampleWriter method), 44
items() (ReaderCheckout method), 53
items() (WriterCheckout method), 36

K
keys() (Columns method), 39
keys() (FlatSampleWriter method), 42, 56
keys() (FlatSubsampleReader method), 60
keys() (FlatSubsampleWriter method), 47
keys() (NestedSampleReader method), 58
keys() (NestedSampleWriter method), 44
keys() (ReaderCheckout method), 53
keys() (WriterCheckout method), 36

L
list_all() (Remotes method), 29
list_branches() (Repository method), 24
load() (BasePlugin method), 146
load() (in module hangar.external._external), 145
log() (ReaderCheckout method), 53
log() (Repository method), 24
log() (WriterCheckout method), 36

M
make_tf_dataset() (in module hangar), 61
make_torch_dataset() (in module hangar), 62
MASTER

hangar-diff command line option, 138
merge() (Repository method), 24
merge() (WriterCheckout method), 37

N
NAME

hangar-branch-create command line
option, 135

hangar-branch-delete command line
option, 135

hangar-column-create command line
option, 137

hangar-column-remove command line
option, 138

hangar-remote-add command line
option, 142

hangar-remote-remove command line
option, 142

NestedSampleReader (class in
hangar.columns.layout_nested), 57

NestedSampleWriter (class in
hangar.columns.layout_nested), 43

num_subsamples (NestedSampleReader attribute), 58
num_subsamples (NestedSampleWriter attribute), 45

P
PATH

hangar-import command line option,
141

path (Repository attribute), 24

182 Index

Hangar, Release 0.5.2

ping() (Remotes method), 29
pop() (FlatSampleWriter method), 42, 56
pop() (FlatSubsampleWriter method), 47
pop() (NestedSampleWriter method), 45
push() (Remotes method), 29

R
ReaderCheckout (class in hangar.checkout), 49
ReaderUserDiff (class in hangar.diff), 61
REMOTE

hangar-clone command line option,
136

hangar-fetch command line option,
140

hangar-fetch-data command line
option, 140

hangar-push command line option, 142
remote (Repository attribute), 24
remote_reference_keys (FlatSampleWriter at-

tribute), 42, 56
remote_reference_keys (FlatSubsampleReader

attribute), 60
remote_reference_keys (FlatSubsampleWriter

attribute), 47
remote_reference_keys (NestedSampleReader at-

tribute), 59
remote_reference_keys (NestedSampleWriter at-

tribute), 45
remote_sample_keys (Columns attribute), 39
Remotes (class in hangar.repository), 28
remove() (Remotes method), 30
remove_branch() (Repository method), 25
Repository (class in hangar.repository), 20
reset_staging_area() (WriterCheckout method),

37

S
SAMPLE

hangar-view command line option, 144
sample (FlatSubsampleReader attribute), 60
sample (FlatSubsampleWriter attribute), 48
sample_name() (BasePlugin static method), 147
save() (BasePlugin method), 147
save() (in module hangar.external._external), 145
schema_type (FlatSampleWriter attribute), 42, 57
schema_type (NestedSampleReader attribute), 59
schema_type (NestedSampleWriter attribute), 45
SHAPE

hangar-column-create command line
option, 137

shape (FlatSampleWriter attribute), 42, 57
shape (NestedSampleReader attribute), 59
shape (NestedSampleWriter attribute), 45
show() (BasePlugin method), 147

show() (in module hangar.external._external), 146
size_human (Repository attribute), 26
size_nbytes (Repository attribute), 26
staged() (WriterUserDiff method), 49
STARTPOINT

hangar-branch-create command line
option, 135

hangar-export command line option,
139

hangar-fetch-data command line
option, 140

hangar-log command line option, 141
hangar-summary command line option,

143
hangar-view command line option, 144

status() (WriterUserDiff method), 49
summary() (Repository method), 27

U
update() (FlatSampleWriter method), 42, 57
update() (FlatSubsampleWriter method), 48
update() (NestedSampleWriter method), 45

V
values() (Columns method), 39
values() (FlatSampleWriter method), 42, 57
values() (FlatSubsampleReader method), 60
values() (FlatSubsampleWriter method), 48
values() (NestedSampleReader method), 59
values() (NestedSampleWriter method), 45
values() (ReaderCheckout method), 54
values() (WriterCheckout method), 37
verify_repo_integrity() (Repository method),

27
version (Repository attribute), 28

W
writer_lock_held (Repository attribute), 28
WriterCheckout (class in hangar.checkout), 30
WriterUserDiff (class in hangar.diff), 48

Index 183

	What is Hangar?
	Installation
	Documentation
	Development
	Overview
	What is Hangar?
	Installation
	Documentation
	Development

	Usage
	Installation
	Pre-Built Installation
	Source Installation

	Hangar Core Concepts
	What Is Hangar?
	Inspiration
	How Hangar Thinks About Data
	Implications of the Hangar Data Philosophy
	What’s Next?

	Python API
	Repository
	Write Enabled Checkout
	Read Only Checkout
	ML Framework Dataloaders

	Hangar Tutorial
	Quick Start Tutorial
	🏃♀️ Quick Start for the Impatient
	🚶♀️ Quick Start - with explanations
	Part 1: Creating A Repository And Working With Data
	Part 2: Checkouts, Branching, & Merging
	Part 3: Working With Remote Servers
	Dataloaders for Machine Learning (Tensorflow & PyTorch)
	“Real World” Quick Start Tutorial

	Hangar Under The Hood
	Things In Life Change, Your Data Shouldn’t
	Data Is Large, We Don’t Waste Space
	The Basics of Collaboration: Branching and Merging

	Hangar CLI Documentation
	hangar

	Hangar External
	High Level Methods
	Plugin System

	Frequently Asked Questions
	How can I get an Invite to the Hangar User Group?
	Data Integrity
	How Can a Hangar Repository be Backed Up?
	On Determining Column Schema Sizes

	Backend selection
	Identification
	Process & Guarantees
	Backend Specifications

	Contributing to Hangar
	Contributing
	Contributor Code of Conduct
	Hangar Performance Benchmarking Suite

	Authors
	Change Log
	red`0.5.2`_ (2020-05-08)
	red`0.5.1`_ (2020-04-05)
	v0.5.0 (2020-04-4)
	v0.4.0 (2019-11-21)
	v0.3.0 (2019-09-10)
	v0.2.0 (2019-08-09)
	v0.1.1 (2019-05-24)
	v0.1.0 (2019-05-24)
	v0.0.0 (2019-04-15)

	Indices and tables
	Python Module Index
	Index

